R20

I B. Tech I Semester Regular Examinations, August - 2021 MATHEMATICS - I (Common to ALL Branches)

Time : 3 Hours

Max. Marks : 70

Note : Answer ONE question from each unit (5 × 14 = 70 Marks)

UNIT-I

1.	a)	Solve $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$	[7M]
	b)	Show that the family of curves $y^2 = 4a(x + a)$ is self- orthogonal.	[7M]
		(OR)	
2.	a)	Solve $(xysinxy + cosxy)y dx + (xysinxy - cosxy)x dy = 0$	[7M]
	b)	A body kept in air with temperature 25° C, cools from 140° C to 80° C in 20 minutes. Find when the body cools down to 35° C.	[7M]
		UNIT-II	
3.	a)	Solve $(D^2 - 4D + 4)y = e^{3x} Cos 2x$	[7M]
	b)	Solve $\frac{d^2y}{dx^2} + 4y = Sec 2x$ using the method of variation of parameters.	[7M]
(OR)			
4.	a)	Solve $(D^2 + 3D + 2)y = xe^x sinx$	[7M]
	b)	An RCL circuit connected in series has $R = 10 Ohms$, $C = 10^{-2}Farad$, $L = \frac{1}{2}henries$ and an applied Voltage E(t) = 12 volts. Assuming no initial current and no initial charge at $t = 0$ when the voltage is first applied, find the subsequent current in the system.	[7M]
UNIT-III			
5.	a)	State and verify Rolle's theorem for the function $f(x) = cos \frac{1}{x}$ in the interval $[-1,1]$	[7M]
	b)	Use Lagrange's mean value theorem show that	[7M]
		$\frac{x}{\sqrt{1-x^2}} \le \sin^{-1}x < x \text{ if } 0 \le x < 1$	

(OR)

- 6. a) Verify Cauchy's mean value theorem for $f(x) = \sin x$ and [7M] $g(x) = \cos x$ in the interval [a, b]
 - b) Expand tan x by Maclaurin's series upto the term containing x^5 [7M]

UNIT-IV

- 7. a) Expand $f(x, y) = \tan^{-1}\left(\frac{y}{x}\right)$ in powers of (x 1) and (y 1) upto [7M] third degree terms.
 - b) Find the maxima and minima of the function [7M] $f(x, y) = x^3 y^2 (1 - x - y)$

8. a) If
$$u = \log (x^3 + y^3 + z^3 - 3xyz)$$
, [7M]
show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$

b) Find the volume of the greatest rectangular parallelopiped that [7M] can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

UNIT-V

9. a) Evaluate
$$\int_0^1 \int_{x^2}^{2-x} xy \, dx \, dy$$
 by changing the order of integration. [7M]

b) Evaluate
$$\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+\log y} e^{x+y+z} dz \, dy \, dx$$
 [7M]

(OR)

10. a) Evaluate
$$\int_0^1 \int_x^{\sqrt{x}} xy \, dx \, dy$$
 by changing the order of integration. [7M]

b) Evaluate
$$\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$$
 by changing to polar coordinates. [7M]

* * * * *