VASIREDDY VENKATADRI INSTITUTE OF TECHNOLOGY

Nambur (V), Pedakakani (M), Guntur (Dt.), Andhra Pradesh - 522 508

DEPARTMENT OF CIVIL ENGINEERING

COURSE STRUCTURE AND SYLLABUS

for

B. TechCivil Engineering

(Applicable for batches admitted from 2020-2021)

VASIREDDY VENKATADRI INSTITUTE OF TECHNOLOGY

VASIREDDY VENKATADRI INSTITUTE OF TECHNOLOGY (Autonomous)

Approved by AICTE, Permanently Affiliated to JNTUK, NAAC Accredited with 'A' Grade, ISO 9001:2015 Certified Nambur (V), Pedakakani (M), Guntur (Dt.), Andhra Pradesh – 522 508

About Institute

VasireddyVenkatadri Institute of Technology (VVIT) was established in the year 2007, with an intake of 240 students in four B. Tech programs under Social Educational Trust in Nambur village, Guntur, AP, by Er. VasireddyVidyaSagar. It is located strategically between Guntur and Vijayawada in the capital region of Amravati, AP. In a short span of ten years, with an annual intake capacity of 1260 and 81 students into B.Tech (CE, EEE, ME, ECE, CSE, IT, CSM, CSO, CIC and AID) and M. Tech (CSE, VLSI&ES, PEED, MD, SE) programs respectively, today almost 4000 students, 345 teaching staff and 225 non-teaching staff strive to fulfill the vision of VVIT.

VVIT has emerged as one of the top ten Engineering Colleges from the 200 engineering colleges affiliated to JNTU Kakinada. The Institute signedMoUs with Industry and Training & Placement Companies like Infosys, Tech Mahindra, Social Agro, Efftronics, AMCAT and Cocubes. Centre of Excellence (CoE) by Siemens India was established in the year 2016 by APSSDCto promote Industry Institute interface and strengthen employability skills in students, Google Inc. USA for establishing Google Code labs, University Innovative Fellowship (UIF) program by Stanford University USA and VDC established by Northeastern University

On achieving permanent affiliation to JNTUK, Kakinada, NAAC 'A" grade certification (CGPA 3.09) and B. Tech programs (CE, EEE, ME, ECE, CSE, IT) accredited by NBA, VVIT has set its sight on centrally funded research projects with 10 completed and 6 running DST projects and consultancy service from other departments. VVIT as part of its commitment to research, has published 13 patents, 16 books and nearly 690 journal papers and also has a 'Research Centre affiliated to JNTUK'.

Institute Vision

To impart quality education through exploration and experimentation and generate socially conscious engineers, embedding ethics and values, for the advancement in science and technology.

Institute Mission

- To educate students with a practical approach to dovetail them to industry-needs.
- To govern the institution with a proactive and professional management with passionate teaching faculty.
- To provide holistic and integrated education and achieve over all development of students by imparting scientific and technical, social and cognitive, managerial and organizational skills.
- To compete with the best and be the most preferred institution of the studious and the scholarly.
- To forge strong relationships and linkage with the industry.

Department Vision

To provide globally competitive and socially responsible Civil Engineering professionals, who can contribute to the organization and nation-building through their innovative ideas and to create knowledge pool of Civil Engineering through quality research.

Department Mission

- > To develop and implement qualitative teaching and learning practices to impart quality education to the students to dovetail them to industry needs
- To develop engineers with good scientific and engineering knowledge so as to comprehend, analyze, design and apply knowledge to the fast changing needs in the field of Civil Engineering.
- To provide hands-on experience and knowledge to the students to make them engineers of excellence.
- ➤ To promote innovative and original thinking in the minds of budding engineers to face the Challenges of future by shaping the department into a center of academic and research excellence.
- To inculcate the value of discipline and encourage the student to become a responsible and worthy citizen of the nation.

Program Educational Objectives (PEOs)

- **PEO 1 :** To produce the students who can excel in their professional career and/or in higher education by acquiring knowledge in mathematical, computing and engineering principles.
- **PEO 2** : To produce the students who can analyze any real life problem and design structures which are not only safe, eco-friendly and economical but also socially acceptable.
- **PEO 3 :** To train the students to exhibit the ethical professionalism by imbibing right attitude and built teamwork.
- **PEO 4** : To produce the students who excel as an entrepreneur by adapting lifelong learning practices and facing the challenges with acquired knowledge through research and development and innovative thinking.

Program Outcomes (POs)

- **PO1 : Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2** : **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3 : Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs

with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

- **PO4** : Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5** : Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6** : The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7 : Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** : Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** : Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10 : Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11 : Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12 : Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

- **PSO1** : Graduates will be able to adapt creative thinking and problem-solving approach in planning, analysis, design and estimation of civil engineering structures and services.
- **PSO2**: Able to act as renowned consultant in all divisions of civil engineering for providing sustainable solutions to practical problems.
- **PSO3 :** Graduates will be able to acquire updated knowledge to provide cost-effective solutions to societal engineering problems

ACADEMIC REGULATIONS (R20) FOR B. TECH (REGULAR)

Applicable for the students of B.Techfrom the Academic Year 2020 – 21 onwards

1.Award of B. Tech. Degree

A student will be declared eligible for the award of B. Tech. degree if he/she fulfills the following:

- > Pursues a course of study in not less than four and not more than eight academic years.
- After eight academic years from the year of their admission, he/she shall forfeit their seat in B. Tech course and their admission stands cancelled.
- > Registers for 160 credits and must secure all the 160 credits.
- A student shall be eligible for the award of B.Tech degree with Honors or Minor if he/she earns 20 credits in addition to the 160 credits. A student shall be permitted to register either for Honors or for Minor and not for both simultaneously.
- 2. Courses of Study: The following courses of study are offered at present as specializations for the B. Tech. Courses

S. No.	Branch	Branch Short Form	Branch Code
1	Civil Engineering	CIV	01
2	Electrical and Electronics Engineering	EEE	02
3	Mechanical Engineering	MEC	03
4	Electronics and Communication Engineering	ECE	04
5	Computer Science and Engineering	CSE	05
6	Information Technology	INF	12
7	CSE (Artificial Intelligence and Machine Learning)	CSM	42
8	CSE (Internet of Things and Cyber Security with Block Chain Technology)	CIC	47
9	CSE (Internet of Things)	CSO	49
10	Artificial Intelligence and Data Science	AID	54

- **3.** Medium of Instruction: The medium of instruction of the entire B. Tech undergraduate programme in Engineering & Technology (including examinations and project reports) will be in English only.
- **4. Admissions:** Admission to the B. Tech Programme shall be made subject to the eligibility, qualifications and specialization prescribed by the A.P. State Government/University from time to time. Admissions shall be made either on the basis of the merit rank obtained by the student in the common entrance examination conducted by the A.P. Government/University or on the basis of any other order of merit approved by the A.P. Government/University, subject to reservations as prescribed by the Government/University from time to time.
- **5. Structure of the Undergraduate Engineering program:** Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below:

S.No.	Category	Breakup of Credits
1	Humanities and social science including Management courses	10.5 - 12
2	Basic Science courses	21 - 25
3	Engineering science courses	24
4	Professional core Courses	48 - 51
5	Open Elective Courses	12 - 18
6	Professional Elective Courses	15 - 18
7	Internship, seminar, project wok	15 – 16.5
8	Mandatory courses	NC
9	Skill Oriented Courses	
	Total Credits	160

** Breakup of Credits based on AICTE /APSCHE

Assigning of Credits

- ➢ Hr. Lecture (L) per week − 1 credit
- ➢ Hr. Tutorial (T) per week − 1 credit
- ➢ Hr. Practical (P) per week − 0.5 credits

6. Programme Pattern

- i. Total duration of the of B. Tech (Regular) Programme is four (three for lateral entry) academic years
- ii. Each Academic year of study is divided in to two semesters.
- iii. Minimum number of instruction days in each semester is 90.
- iv. Grade points, based on percentage of marks awarded for each course will form the basis for calculation of SGPA (Semester Grade Point Average) and CGPA (Cumulative Grade Point Average).
- v. The total credits for the Programme are 160.
- vi. A three-week induction program is mandatory for all first year UG students (Physical activity, Creative Arts, Universal Human Values, Literary, Proficiency Modules, Lectures by Eminent People, Visits to local Areas, Familiarization to Dept./Branch & Innovations etc.,) and shall be conducted as per AICTE/UGC/APSCHE guidelines.
- vii. Student is introduced to "Choice Based Credit System (CBCS)".
- viii. A pool of interdisciplinary and job-oriented mandatory skill courses which are relevant to the industry are integrated into the curriculum of concerned branch of engineering (total five skill courses: two basic level skill courses, one on soft skills and other two on advanced level skill courses)
- ix. A student has to register for all courses in a semester.
- x. All the registered credits will be considered for the calculation of final CGPA.
- xi. Each semester has Continuous Internal Evaluation (CIE) and Semester End Examination (SEE). Choice Based Credit System (CBCS) and Credit Based Semester System (CBSS) as indicated by UGC and course structure as suggested by AICTE are followed.
- xii. A 10 months industry/field mandatory internship, both industry and social, during the summer vacation and also in the final semester to acquire the skills required for job and make engineering graduates to connect with the needs of the industry and society at large.
- xiii. All students shall be mandatorily registered for NCC/NSS activities. A student will be required to participate in an activity for two hours in a week during second and third semesters. Grade shall be awarded as Satisfactory or Unsatisfactory in the mark sheet on the basis of participation, attendance, performance and behavior. If a student gets an unsatisfactory Grade, he/she shall repeat the above activity in the subsequent years, in order to complete the degree requirements.
- xiv. Courses like Environmental Sciences, Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge etc., shall be included in the curriculum as

non-credit mandatory courses. Environmental Sciences is to be offered compulsorily as mandatory course for all branches. A student has to secure 40% of the marks allotted in the internal evaluation for passing the course. No marks or letter grade shall be allotted for all mandatory non-credit courses.

- xv. College shall assign a faculty advisor/mentor after admission to each student or group of students from same department to provide guidance in courses registration/career growth/placements/opportunities for higher studies / GATE / other competitive exams etc.
- xvi. Departments may swap some of the courses between first and second semesters to balance the work load.
- xvii. The concerned Board of studies can assign tutorial hours to such courses wherever it is necessary, but without change in the total number of credits already assigned for semester.

8. Registration for Courses

- i. The college shall invite registration forms from the students at the beginning of the semester for the registration for courses each semester. The registration process shall be closed within one week. If any student wishes to withdraw the registration, he/she shall submit a letter to the principal through the class teacher/instructor and HOD. The principal shall communicate the registration and withdraw details courses of each student in a consolidated form to the college examination section and University without fail.
- ii. There are four open electives in each branch. All Open Electives are offered to students of all branches in general. A student shall choose an open elective, by consulting the HOD/advisor, from the list in such a manner that he/she has not studied the same course in any form during the Programme. The college shall invite registration forms from the students at the beginning of the semester for offering professional and open elective courses. There shall be a limit on the minimum and maximum number of registrations based on class/section strength.
- iii. A student shall be permitted to pursue up to a maximum of two elective courses under MOOCs during the programme. Students are advised to register for only for minimum 12 weeks in duration MOOCs courses. Student has to pursue and acquire a certificate for a MOOC course only from the SWAY/NPTE through online with the approved by the BoS in order to earn the 3 credits. The Head of the department shall notify the list of such courses at the beginning of the semester. The details of the MOOCs courses registered by the students shall be submitted to the University examination center as well as college examination center. The Head of the Department shall appoint a mentor for each of the MOOC subjects registered by the students to monitor the student's assignment submissions given by SWAYAM/NPTEL. The student needs to submit all the assignments given and needs to take final exam at the proctor center. The student

needs to earn a certificate by passing the exam. The student will be awarded the credits given in curriculum only by submission of the certificate. In case if student does not pass subjects registered through SWAYAM/NPTEL, the same or alternative equivalent subject may be registered again through SWAYAM/NPTEL in the next semester with the recommendation of HOD and shall be passed.

- iv. Two summer internships each with a minimum of six weeks duration shall be mandatorily done/completed respectively at the end of second and third years (during summer vacations). The internship can be done by the students at local industries, Govt. Organizations, construction agencies, Industries, Hydel and thermal power projects and also in software MNCs. After completing the summer internship, the students shall register in the immediate respective odd semester and it will be evaluated at the end of the semester as per norms of the autonomy. The student has to produce the summer internship satisfactory report and certificate taken from the organization to be considered for evaluation. The College shall facilitate and monitor the student internship programs. Completion of internships is mandatory, if any student fails to complete internship, he/she will not be eligible for the award of degree. In such cases, the student shall repeat and complete the internship.
- v. In the final semester, the student should mandatorily register and undergo internship and in parallel he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report. A student shall also be permitted to submit project report on the work carried out during the internship. The project report shall be evaluated with an external examiner.
- vi. Curricular Framework for Skill oriented courses
 - a. There are five (05) skill-oriented courses shall be offered during III to VII semesters and students must register and pass the courses successfully.
 - b. For skill oriented/skill advanced course, one theory and 2 practical hours (1-0-2) or two theory hours (2-0-0) may be allotted as per the decision of concerned BOS.
 - c. Out of the five skill courses; (i) two shall be skill-oriented courses from the same domain and shall be completed in second year (ii) Of the remaining 3 skill courses, one shall be necessarily be a soft skill course and the remaining two shall be skill-advanced courses either from the same domain or job-oriented skill courses, which can be of inter disciplinary nature.
 - d. Students may register the interdisciplinary job-oriented skill courses based on the prerequisites and eligibility in consultation with HoD of the college.
 - e. The student shall be given an option to choose either the skill courses being offered by the college or to choose a certificate course being offered by industries/Professional bodies/APSSDC or any other accredited bodies. However,

the department has to assign mentors in the college to monitor the performance of the students.

f. If a student chooses to take a certificate course offered by industries/Professional bodies/APSSDC or any other accredited bodies, in lieu of the skill advanced course offered by the department, then the department shall mark overall attendance of the student for the remaining courses in that semester excluding the skill course in all the calculations of mandatory attendance requirements upon producing a valid certificate. However, the student is deemed to have fulfilled the attendance requirement of the course, if the external agency issues a certificate with satisfactory condition. If the certificate issued by external agency is marked with unsatisfactory condition, then the student shall repeat the course either in the college or at external agency. The credits will be awarded to the student upon producing the successful course completion certificate from the agency/professional bodies and after passing in the viva-voce examination conducted at college as per BoS norms at the end of the semester.

9. Attendance Requirements:

- i. A student is eligible to write the semester-end examinations if he acquires a minimum of 40% in each subject and 75% of attendance in aggregate of all the subjects.
- ii. Shortage of Attendance below 65% in aggregate shall in NO case be condoned. Students whose shortage of attendance is not condoned in any semester are not eligible to take their end semester examination of that class and their registration shall stand cancelled.
- iii. Condonation for shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester may be granted by the College Academic Committee.
- iv. A student will not be promoted to the next semester unless he satisfies the attendance requirements of the present semester, as applicable. They may seek readmission for that semester when offered next.
- v. A student will be promoted to the next semester if he satisfies the(a) attendance requirement of the present semester and (b) minimum required credits (from Vth Semester onwards).
- vi. If any candidate fulfills the attendance requirement in the present semester, he shall not be eligible for readmission into the same class.
- vii. For induction programme attendance shall be maintained as per AICTE norms.
- viii. For non-credit mandatory courses the students shall maintain the attendance similar to credit courses.

10. Evaluation-Distribution and Weightage of marks

Paper setting and evaluation of the answer scripts shall be done as per the procedures laid down by the Academic Council of the institute from time to time.

- i. A student is deemed to have satisfied the minimum academic requirements if he/she has earned the credits allotted to each theory/practical design/drawing subject/ project etc. by securing not less than 35% of marks in the end semester exam and minimum 40% of marks in the total of the internal marks and end semester examination marks together.
- ii. For non-credit mandatory courses, like Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge, the student has to secure 40% of the marks allotted in the internal evaluation for passing the course. No marks or letter grade shall be allotted for all mandatory non-credit courses.
- iii. Distribution and Weightage of marks: The assessment of the student's performance in each course will be based on Continuous Internal Evaluation (CIE) and Semester-End Examination (SEE). The performance of a student in each semester shall be evaluated subject–wise with a maximum of 100 marks for theory subject, 50 marks for practical subject/Mini Project/Internship/Industrial Training/ Skill Development programmes/Research Project, and 200 marks for end Project Work.

iv. Guide lines for Continuous Internal Evaluation (CIE)

- a. For theory subjects, during a semester, there shall be two mid-term examinations. Each mid-term examination consists of (i) one online objective examination (ii) one descriptive examination (iii) one assignment and (iv) one Subject Seminar. The online examination (objective) shall be 10 marks with duration of 20 minutes, descriptive examination shall be for 10 marks with a duration of 1 hour 30 minutes, assignment test shall be 5 marks with duration of 50 minutes (Open book system with questions of L4 standard on Bloom's scale) and 90 minutes for descriptive paper) and Subject Seminar 5 marks.
- b. The first online examination (objective) is set with 20 multiple choice questions for 10 marks (20 questions x 1/2 marks) from first two and half units (50% of the syllabus).
- c. The descriptive examination is set with 3 full questions for 10 marks each from first two and half units (50% of the syllabus), the student has to answer all questions.
- d. The Assignment Test from first two and half units conducted for 20 Marks and will be scaled down to 5 Marks. The test is open book system and the duration of the exam is 50 minutes. Students can bring a maximum of three printed text books related to that subject. (Soft copies of the text books will not be allowed.) The

assignments have to provide broadened exposure to the course. The questions shall include problem solving approach, problem analysis & design, implementation, case studies etc.

- e. For the subject seminar 5 marks, each student shall be evaluated based on the presentation on any topic of his/her choice in the subject duly approved by the faculty member concerned.
- f. For the subject having design and / or drawing (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 30 marks for internal evaluation (15 marks for continuous Assessment (day-to-day work) and 15 marks for internal tests).

In the similar lines, the mid-2 examinations shall be conducted on the rest of the syllabus.

- f. For practical subjects there shall be continuous evaluation during the semester for 25 marks. The internal 25 marks shall be awarded as follows: day to day work 5 marks, record 5 marks and the remaining 15 marks are to be awarded by conducting an internal laboratory test of 3 hours duration.
- g. The mid marks submitted to the examination section shall be displayed in the concerned department notice boards for the benefit of the students. If any discrepancy found in the displayed Mid marks, it shall be brought to the notice of examination section within two working days from the date of display.
- h. Internal marks can be calculated with 80% weightage for better of the two mids and 20% Weightage for another mid exam.

Example:

Mid-1 marks = Marks secured in (online examination-1+descriptive examination-1+one assignment-1 + Seminar-1)

Mid-2 marks = Marks secured in (online examination-2+descriptive examination-2 +one assignment-2 + Seminar-2)

Final internal Marks = (Best of (Mid-1/Mid-2) marks x 0.8 + Least of (Mid-1/Mid-2) marks x 0.2)

v. Semester End Examinations Evaluation:

a. The semester end examinations for theory subjects will be conducted autonomous examination section for 70 marks consists of five questions carrying 14 marks each. Each of these questions is from one unit and may contain sub-questions. For each question there will be an "either" "or" choice, which means that there will be two questions from each unit and the student should answer either of the two questions.

- b. For practical subjects shall be conducted for 35 marks by the teacher concerned and external examiner appointed by Chief superintendent/ Controller of Examinations (CoE), VVIT. All the laboratory records and internal test papers shall be preserved in respective departments as per autonomous norms and shall be produced to the Committees as and when they ask for.
- c. Evaluation of the summer internships: It shall be completed in collaboration with local industries, Govt. Organizations, construction agencies, Industries, Hydel and thermal power projects and also in software MNCs in the area of concerned specialization of the UG programme. Students shall pursue this internship during summer vacation just before its offering as per course structure. The minimum duration of this course shall be at least 6 weeks. The student shall register for the internship as per course structure after commencement of academic year. A supervisor/mentor/advisor has to be allotted to guide the students for taking up the summer internship. The supervisor shall monitor the attendance of the students while taking up the internship. Attendance requirements are as per the norms of the academic regulations. After successful completion, students shall submit a summer internship technical report to the concerned department and appear for an oral presentation before the departmental committee consists of an external examiner appointed by Chief superintendent/ CoE; Head of the Department, supervisor of the internship and a senior faculty member of the department. A certificate from industry/skill development center shall be included in the report. The report and the oral presentation shall carry 40% and 60% weightages respectively. It shall be evaluated for 50 external marks at the end of the semester. There shall be no internal marks for Summer Internship. A student shall secure minimum 40% of marks for successful completion. In case, if a student fails, he/she shall reappear as and when semester supplementary examinations are conducted by the examination section.
- d. The job-oriented skill courses may be registered at the college or at any accredited external agency. A student shall submit a record/report on the on the list skills learned. If the student completes job-oriented skill course at external agency, a certificate from the agency shall be included in the report. The course will be evaluated at the end of the semester for 50 marks (record: 15 marks and viva-voce: 35 marks) along with laboratory end examinations in the presence of external (appointed by the Chief superintendent/ CoE) and internal examiner (course instructor or mentor). There are no internal marks for the job-oriented skill courses.
- e. Mandatory Course (M.C): Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge etc. noncredit (zero credits) mandatory courses. Environmental Sciences shall be offered compulsorily as mandatory course for all branches. A minimum of 75%

attendance is mandatory in these subjects. There shall be an external examination for 70 marks and it shall be conducted by the department internally. Two internal examinations shall be conducted for 30 marks and a student has to secure at least 40% of the marks for passing the course. There is no online internal exam for mandatory courses. No marks or letter grade shall be printed in the transcripts for all mandatory non-credit courses, but only Completed (Y)/Not-completed (N) will be specified.

- f. Procedure for Conduct and Evaluation of MOOC: There shall be a Discipline Centric Elective Course through Massive Open Online Course (MOOC) as Program Elective course. The student shall register for the course (Minimum of 12 weeks) offered by SWAYAM/NPTEL/etc., through online with the approval of Head of the Department. The Head of the Department shall appoint one mentor for each of the MOOC subjects offered. The student needs to register the course in the SWAYAM/NPTEL portal. During the course, the mentor monitors the student's assignment submissions given by SWAYAM/NPTEL. The student needs to submit all the assignments given and needs to take final exam at the proctor center. The student needs to earn a certificate by passing the exam. The student will be awarded the credits given in curriculum only by submission of the certificate. In case if student does not pass subjects registered through SWAYAM/NPTEL, the same or alternative equivalent subject may be registered again through SWAYAM/NPTEL in the next semester with the recommendation of HOD and shall be passed.
- g. Major Project (Project Project work, seminar and internship in industry): In the final semester, the student should mandatorily register and undergo internship and in parallel he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report. A student shall also be permitted to submit project report on the work carried out during the internship. The project report shall be evaluated with an external examiner. Evaluation: The total marks for project work 200 marks and distribution shall be 60 marks for internal and 140 marks for external evaluation. The supervisor assesses the student for 30 marks (Report: 15 marks, Seminar: 15 marks). At the end of the semester, all projects shall be showcased at the department for the benefit of all students and staff and the same is to be evaluated by the departmental Project Review Committee consisting of supervisor, a senior faculty and HOD for 30 marks. The external evaluation of Project Work is a Viva-Voce Examination conducted in the presence of internal examiner and external examiner appointed by the Chief superintendent/ CoE and is evaluated for 140 marks.
- vi. Recounting/ Revaluation/ Revaluation by Challenge in the End Semester Examination: A student can request for recounting/ revaluation/ revaluation by

challenge of his/her answer book on payment of a prescribed fee as per autonomous norms.

- vii. Supplementary Examinations: A student who has failed to secure the required credits can appear for a supplementary examination, as per the schedule announced by the examination section.
- viii. Malpractices in Examinations: Disciplinary action shall be taken in case of malpractices during Mid/End examinations as per the rules framed by the academic council.
- ix. If the student is involved in indiscipline/malpractices/court cases, the result of the student will be withheld.

11. Promotion Rules:

- i. A student shall be promoted from first year to second year if he fulfills the minimum attendance requirements.
- ii. A student will be promoted from II year to III year if he fulfills the academic requirement of 40% of credits up to either II year I-Semester or II year II-Semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in II year II semester.
- iii. A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to either III year I semester or III year II semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

12. Course Pattern

- i. The entire course of study is for four academic years; all years are on semester pattern.
- ii. A student eligible to appear for the end semester examination in a subject, but absent from it or has failed in the end semester examination, may write the exam in that subject when conducted next.
- iii. When a student is detained for lack of credits/shortage of attendance, he may be readmitted into the same semester/year in which he has been detained. However, the academic regulations under which he was first admitted shall continue to be applicable to him.

13.Grading:

% of Marks	Letter Grade	Level	Grade Points
≥ 90	A+	Outstanding	10
80 to 89	Α	Excellent	9
70 to 79	В	Very Good	8
60 to 69	С	Good	7
50 to 59	D	Fair	6
40 to 49	Ε	Satisfactory	5
<40	F	Fail	0
ABSENT	Ab	Absent	0

The grade points and letter grade will be awarded to each course based on students' performance as per the grading system shown in the following Table.

14. Computation of SGPA and CGPA

i. The Semester Grade Point Average (SGPA) is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e.

 $SGPA(S_i) = \Sigma (C_i \times G_i) / \Sigma C_i$

where, C_i is the number of credits of the ith subject and G_i is the grade point scored by the student in the ith course

ii. The Cumulative Grade Point Average (CGPA) will be computed in the same manner taking into account all the courses undergone by a student over all the semesters of a program, i.e.

 $CGPA = \Sigma (C_i \times Si) / \Sigma Ci$

where ' S_i ' is the SGPA of the ith semester and C_i is the total number of credits in that semester

- iii. Both SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.
- iv. While computing the SGPA/CGPA, the subjects in which the student is awarded Zero grade points will also be included.
- v. Grade Point: It is a numerical weight allotted to each letter grade on a 10-point scale.

- vi. Letter Grade: It is an index of the performance of students in a said course. Grades are denoted by letters A+, A, B, C, D, E and F.
- vii. As per AICTE regulations, conversion of CGPA into equivalent percentage as follows:

Equivalent Percentage = $(CGPA - 0.75) \times 10$

viii. Illustration of Computation of SGPA and CGPA

Illustration for SGPA: Let us assume there are 6 subjects in a semester. The grades obtained as follows:

Course	Credit	Grade Obtained	Grade point	Credit x Grade Point
Subject 1	3	В	8	3 X 8 = 24
Subject 2	4	С	7	4 X 7 = 28
Subject 3	3	D	6	3 X 6 = 18
Subject 4	3	A^+	10	3 X 10 = 30
Subject 5	3	Е	5	3 X 5 = 15
Subject 6	4	D	6	4 X 6 = 24
	20			139

Thus, SGPA (S_i) =139/20 =6.95=6.9 (approx.)

Illustration for CGPA:

	Sem-1	Sem-2	Sem-3	Sem-4	Sem-5	Sem-6	Sem-7	Sem-8
Credits	20	22	25	26	26	25	21	23
SGPA	6.9	7.8	5.6	6.0	6.3	8.0	6.4	7.5

CGPA

 $=\frac{20\,X6.9+22X7.8+25X5.6+26X6.0+26X6.3+25X8.0+21X6.4+23X7.5}{188}$

 $=\frac{1276.3}{188}=6.78$

15. Award of Class:

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. degree, he/she shall be placed in one of the following:

Class Awarded	CGPA to be secured
First Class with distinction*	≥7.5
First Class	≥6.5 &<7.5
Second Class	≥5.5 &<6.5
Pass Class	≥4 &<5.5
Fail	<4

* Awarded only if all the credit courses prescribed are cleared within four years for regular candidates and three years for lateral entry candidates

The students who are approved for break in study for entrepreneurships / startups will also be considered for award of first class with distinction

For the purpose of awarding First, Second and Pass Class, CGPA obtained in the examinations appeared within the maximum period allowed for the completion of the program shall been considered

16.Gap - Year:

Gap Year – concept of Student Entrepreneur in Residence shall be introduced and outstanding students who wish to pursue entrepreneurship are allowed to take a break of one year at any time after I year/II year/III year to pursue entrepreneurship full time. This period shall be counted for the maximum time for graduation. An evaluation committee at university level shall be constituted to evaluate the proposal submitted by the student and the committee shall decide on permitting the student for availing the Gap Year.

17. Transitory Regulations

A candidate, who is detained or discontinued a semester, on re-admission shall be required to pass all the courses in the curriculum prescribed for such batch of students in which the student joins subsequently and the academic regulations be applicable to him/her which are in force at the time of his/her admission. However, exemption will be given to those candidates who have already passed in such courses in the earlier semester(s) and additional courses are to be studied as approved by Board of Studies and ratified by Academic Council.

18.Curricular Framework for Honors Programme

- i. Students of a Department/Discipline are eligible to opt for Honors Programme offered by the same Department/Discipline.
- ii. A student shall be permitted to register for Honors program at the beginning of 4th semester provided that the student must have acquired a minimum of 8.0 SGPA up to the end of 2nd semester without any backlogs. In case of the declaration of the 3rd semester results after the commencement of the 4th semester and if a student fails to score the required minimum of 8 SGPA, his/her registration for Honors Programme stands cancelled and he/she shall continue with the regular Programme.
- iii. Students can select the additional and advanced courses from their respective branch in which they are pursuing the degree and get an honors degree in the same. e.g. If a Mechanical Engineering student completes the selected advanced courses from same branch under this scheme, he/she will be awarded B.Tech. (Honors) in Mechanical Engineering.
- iv. In addition to fulfilling all the requisites of a Regular B.Tech Programme, a student shall earn 20 additional credits to be eligible for the award of B. Tech (Honors) degree. This is in addition to the credits essential for obtaining the Under Graduate Degree in Major Discipline (i.e., 160 credits).
- v. Of the 20 additional Credits to be acquired, 16 credits shall be earned by undergoing specified courses listed as pools, with four courses, each carrying 4 credits. The remaining 4 credits must be acquired through two MOOCs, which shall be domain specific, each with 2 credits and with a minimum duration of 8/12 weeks as recommended by the Board of studies.
- vi. It is the responsibility of the student to acquire/complete prerequisite before taking the respective course. The courses offered in each pool shall be domain specific courses and advanced courses.
- vii. The concerned BoS shall decide on the minimum enrolments for offering Honors program by the department. If minimum enrolments criteria are not met then the students shall be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department in consultation with BoS.
- viii. Each pool can have theory as well as laboratory courses. If a course comes with a lab component, that component has to be cleared separately. The concerned BoS shall explore the possibility of introducing virtual labs for such courses with lab component.
- ix. MOOC courses must be of minimum 8 weeks in duration. Attendance will not be monitored for MOOC courses. Students have to acquire a certificate from the agencies approved by the BOS with grading or marks or pass/fail in order to earn 4

credits. If the MOOC course is a pass/fail course without any grades, the grade to be assigned will be as decided by the university/academic council.

- x. The concerned BoS shall also consider courses listed under professional electives of the respective B. Tech programs for the requirements of B. Tech (Honors). However, a student shall be permitted to choose only those courses that he/she has not studied in any form during the Programme.
- xi. If a student drops or is terminated from the Honors program, the additional credits so far earned cannot be converted into free or core electives; they will remain extra. These additional courses will find mention in the transcript (but not in the degree certificate). In such cases, the student may choose between the actual grade or a "pass (P)" grade and also choose to omit the mention of the course as for the following: All the courses done under the dropped Minors will be shown in the transcript. None of the courses done under the dropped Minor will be shown in the transcript.
- xii. In case a student fails to meet the CGPA requirement for Degree with Honors at any point after registration, he/she will be dropped from the list of students eligible for Degree with Honors and they will receive regular B.Tech degree only. However, such students will receive a separate grade sheet mentioning the additional courses completed by them.
- xiii. Honors must be completed simultaneously with a major degree program. A student cannot earn Honors after he/she has already earned bachelor's degree.

19. Curricular Framework for Minor Programme

- i. Students who are desirous of pursuing their special interest areas other than the chosen discipline of Engineering may opt for additional courses in minor specialization groups offered by a department other than their parent department. For example, If Mechanical Engineering student selects subjects from Civil Engineering under this scheme, he/she will get Major degree of Mechanical Engineering with minor degree of Civil Engineering
- ii. Student can also opt for Industry relevant tracks of any branch to obtain the Minor Degree, for example, a B.Tech Mechanical student can opt for the industry relevant tracks like Data Mining track, IOT track, Machine learning track etc.
- iii. The BOS concerned shall identify as many tracks as possible in the areas of emerging technologies and industrial relevance / demand. For example, the minor tracks can be the fundamental courses in CSE, ECE, EEE, CE, ME etc., or industry tracks such as Artificial Intelligence (AI), Machine Learning (ML), Data Science (DS), Robotics, Electric vehicles, Robotics, VLSI etc.
- iv. The list of disciplines/branches eligible to opt for a particular industry relevant minor specialization shall be clearly mentioned by the respective BoS.

- v. There shall be no limit on the number of programs offered under Minor. The college can offer minor programs in emerging technologies based on expertise in the respective departments or can explore the possibility of collaborating with the relevant industries/agencies in offering the program.
- vi. The concerned BoS shall decide on the minimum enrolments for offering Minor program by the department. If a minimum enrolments criterion is not met, then the students may be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department in consultation with BoS.
- vii. A student shall be permitted to register for Minors program at the beginning of 4th semester subject to a maximum of two additional courses per semester, provided that the student must have acquired 8 SGPA (Semester Grade point average) up to the end of 2nd semester without any history of backlogs. It is expected that the 3rd semester results may be announced after the commencement of the 4th semester. If a student fails to acquire 8 SGPA up to 3rd semester or failed in any of the courses, his registration for Minors program shall stand cancelled. An SGPA of 8 has to be maintained in the subsequent semesters without any backlog in order to keep the Minors registration active.
- viii. A student shall earn additional 20 credits in the specified area to be eligible for the award of B. Tech degree with Minor. This is in addition to the credits essential for obtaining the Under Graduate Degree in Major Discipline (i.e., 160 credits).
- ix. Out of the 20 Credits, 16 credits shall be earned by undergoing specified courses listed by the concerned BoS along with prerequisites. It is the responsibility of the student to acquire/complete prerequisite before taking the respective course. If a course comes with a lab component, that component has to be cleared separately. A student shall be permitted to choose only those courses that he/she has not studied in any form during the Programme.
- x. In addition to the 16 credits, students must pursue at least 2 courses through MOOCs. The courses must be of minimum 8 weeks in duration. Attendance will not be monitored for MOOC courses. Student has to acquire a certificate from the agencies approved by the BOS with grading or marks or pass/fail in order to earn 4 credits. If the MOOC course is a pass/fail course without any grades, the grade to be assigned as decided by the University/academic council.
- xi. Student can opt for the Industry relevant minor specialization as approved by the concerned departmental BoS. Student can opt the courses from Skill Development Corporation (APSSDC) or can opt the courses from an external agency recommended and approved by concerned BOS and should produce course completion certificate. The Board of studies of the concerned discipline of Engineering shall review such courses being offered by eligible external agencies and prepare a fresh list every year incorporating latest skills based on industrial demand.

- xii. A committee should be formed at the level of College / department to evaluate the grades/marks given by external agencies to a student which are approved by concerned BoS. Upon completion of courses the departmental committee should convert the obtained grades/marks to the maximum marks assigned to that course. The controller of examinations can take a decision on such conversions and may give appropriate grades.
- xiii. If a student drops (or terminated) from the Minor program, they cannot convert the earned credits into free or core electives; they will remain extra. These additional courses will find mention in the transcript (but not in the degree certificate). In such cases, the student may choose between the actual grade or a "pass (P)" grade and also choose to omit the mention of the course as for the following: All the courses done under the dropped Minors will be shown in the transcript.
- xiv. In case a student fails to meet the CGPA requirement for B.Tech degree with Minor at any point after registration, he/she will be dropped from the list of students eligible for degree with Minors and they will receive B. Tech degree only. However, such students will receive a separate grade sheet mentioning the additional courses completed by them.
- xv. Minor must be completed simultaneously with a major degree program. A student cannot earn the Minor after he/she has already earned bachelor's degree.

20. Industrial Collaborations (Case Study)

Institution-Industry linkages refer to the interaction between firms and universities or public research centers with the goal of solving technical problems, working on R&D, innovation projects and gathering scientific as well as technological knowledge. It involves the collaboration of Industries and Universities in various areas that would foster the research ecosystem in the country and enhance growth of economy, industry and society at large.

The Institutions are permitted to design any number of Industry oriented minor tracks as the respective BoS feels necessary. In this process the Institutions can plan to have industrial collaborations in designing the minor tracks and to develop the content and certificate programs. Industry giants such as IBM, TCS, WIPRO etc., may be contacted to develop such collaborations. The Institutions shall also explore the possibilities of collaborations with major industries in the core sectors and professional bodies to create specialized domain skills.

- **21. Amendments to Regulations:** The college may from time-to-time revise, amend or change the Regulations, Curriculum, Syllabus and Scheme of examinations through the Board of Studies with the approval of Academic Council and Governing Body of the college.
- 22. Transferred Students: The students seeking transfer to VVIT from various Universities/ Institutions have to obtain the credits of any equivalent subjects as prescribed by the

Academic Council. Only the internal marks obtained in the previous institution will be considered for evaluation of failed subjects.

ACADEMIC REGULATIONS (R20) FOR B. TECH.

(LATERAL ENTRY SCHEME)

Applicable for the students admitted into II-year B. Tech. from the Academic Year 2021-22 onwards

- **1. Award of B. Tech. Degree:** A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:
 - A student shall be declared eligible for the award of the B. Tech Degree, if he pursues a course of study in not less than three academic years and not more than six academic years.
 - > The candidate shall register for 121 credits and secure all the 121 credits.
 - A student shall be eligible for the award of B.Tech degree with Honors or Minor if he/she earns 20 credits in addition to the 121 credits. A student shall be permitted to register either for Honors or for Minor and not for both simultaneously.
- **2.** The attendance regulations of B. Tech. (Regular) shall be applicable to B.Tech Lateral Entry Students.

3. **Promotion Rule**

- ➤ A student shall be promoted from second year to third year if he fulfills the minimum attendance requirement.
- ➤ A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to either III year I semester or III year II semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

4. Award of Class

After a student has satisfied the requirement prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	CGPA to be secured
First Class with distinction*	≥7.5
First Class	≥6.5 &<7.5
Second Class	≥5.5 &<6.5
Pass Class	≥4 &<5.5
Fail	<4

5. All the other regulations as applicable to B. Tech. 4-year degree course (Regular) will hold good for B. Tech Lateral Entry Scheme.

MALPRACTICE RULES

DISCIPLINARY ACTION FOR IMPROPER CONDUCT IN EXAMINATIONS

S.No.	Nature of Malpractices/Improper conduct	Punishment
1. (a)	Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only.
(b)	Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.
3.	Impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The

		performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination (including practical and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.
4.	Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
5.	Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	Cancellation of the performance in that subject.
6.	Refuses to obey the orders of the Chief Superintendent /Assistant – Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any	In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are

	person on duty in or outside the	debarred and forfeit their seats. In case of
	examination hall of any injury to his	outsiders, they will be handed over to the police
	person or to any of his relations	and a police case is registered against them.
	whether by words, either spoken or	
	written or by signs or by visible	
	representation, assaults the officer-in-	
	charge, or any person on duty in or	
	outside the examination hall or any of	
	his relations, or indulges in any other	
	act of misconduct or mischief which	
	result in damage to or destruction of	
	property in the examination hall or	
	any part of the College campus or	
	engages in any other act which in the	
	opinion of the officer on duty	
	amounts to use of unfair means or	
	misconduct or has the tendency to	
	disrupt the orderly conduct of the	
	examination.	
7.	Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
8.	Possess any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.

9.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the college expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.
10.	Comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.
11.	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.
12.	If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.	

Salient Features

- Ragging within or outside any educational institution is prohibited.
- Ragging means doing an act which causes or is likely to cause Insult or Annoyance of Fear or Apprehension or Threat or Intimidation or outrage of modesty or Injury to a student

Teasing, Embarrassing and Humiliation	Imprisonment upto	+	Fine Upto RS. 1,000/-
Assaulting or Using Criminal force or Criminal intimidation	O ^{ra} l Year	+	Rs. 2,000/-
Wrongfully restraining or confining or causing hurt	2 Years	+	Rs. 5,000/ -
Causing grievous hurt, kidnapping or Abducts or rape or committing unnatural offence	5 Years] +	Rs. 10,000/-
Causing death or abetting suicide	10 Months	+	Rs. 50,000/ -

In case any emergency call Toll Free No. 1800 425 1288 LET US MAKE VVIT A RAGGING FREE CAMPUS

- 1. Ragging is prohibited as per Act 26 of A.P. Legislative Assembly, 1997.
- Ragging entails heavy fines and/or imprisonment.
- 3. Ragging invokes suspension and dismissal from the College.
- 4. Outsiders are prohibited from entering the College and Hostel without permission.
- 5. Girl students must be in their hostel rooms by 7.00 p.m.
- 6. All the students must carry their Identity Cards and show them when demanded
- 7. The Principal and the Wardens may visit the Hostels and inspect the rooms any time.

COURSE STRUCTURE

Definition of Credit (C)

1 Hour Lecture (L) per week	1 Credit
1 Hour Tutorial (T) per week	1 Credit
1 Hour Practical (P) per week	0.5 Credit

Structure of B. Tech program Regulation R20

S.No.	Category	Code	Suggested Breakup of Credits by AICTE	Suggested Breakup of Credits by APSCHE	Breakup of Credits
1	HumanitiesandSocialSciencesincludingManagement courses	HS	12	10.5	10.5
2	Basic Science courses	BS	25	21	18
3	Engineering Science courses including workshop, drawing, basics of electrical/ mechanical/ computer etc	ES	24	24	24
4	Professional core courses	PC	48	51	57
5	Professional Elective courses relevant to chosen specialization/ branch	PE	18	15	15
6	Open subjects – Electives from other technical and /or emerging subjects	OE	18	12	12
7	Project work, seminar and internship in industry or elsewhere	PR	15	16.5	13.5
8	MandatoryCourses[EnvironmentalSciences,Inductiontraining,Inductiontraining,IndianTraditionalKnowledge]	NC	Non-Credit	Non-Credit	Non-Credit
9	Skill Oriented Courses	SC		10	10
	Total		160	160	160

SEMESTER-WISE STRUCTURE OF CURRICULUM

Course structure for eight semesters during four years of study is as follows

I Year I Semester (Semester-1)

S.No.	Course Code	Course Name	L	Τ	P	С
1	BS1101	Mathematics-I	3	0	0	3
2	BS1102	Engineering Physics	3	0	0	3
3	HS1101	Communicative English	3	0	0	3
4	ES1101	Engineering Graphics	1	0	4	3
5	ES1102	Problem Solving using C	3	0	0	3
6	HS1101L	Communicative English Lab	0	0	3	1.5
7	BS1102L	Engineering Physics Lab	0	0	3	1.5
8	ES1103L	Problem Solving using C Lab	0	0	3	1.5
Total Credits 1						19.5

	Category				
BS	Basic Science Courses	3+3+1.5=7.5			
ES	Engineering Science Courses	3+3+1.5=7.5			
HS	Humanities and Social Sciences including Management courses	3+1.5=4.5			
	Total Credits	19.5			

I Year II Semester (Semester-2)

S.No.	Course Code	Course Name	L	Т	Р	С
1	BS1201	Mathematics – II	3	0	0	3
2	BS1202	Engineering Chemistry	3	0	0	3
3	ES1201	Basic Electrical & Electronics Engineering	3	0	0	3
4	ES1202	Building Materials and Construction	3	0	0	3
5	ES1203	Engineering Mechanics	3	0	0	3
6	ES1201L	Civil Workshop Practice Lab	1	0	3	1.5
7	BS1202L	Engineering Chemistry Lab	0	0	3	1.5
8	ES1203L	Basic Electrical & Electronics Lab	0	0	3	1.5
9	MC1201	Indian Constitution	2	0	0	0
				T	otal	19.5

	Category	Credits
BS	Basic Science Courses	3+3+1.5=7.5
ES	Engineering Science Courses	3+3+3+1.5+1.5=12
	Total Credits	19.5

S.No.	Course Code	Course Name	L	Т	Р	С
1	BS2101	Mathematics-III	3	0	0	3
2	PC2101	Strength of Materials	3	0	0	3
3	PC2102	Fluid Mechanics	3	0	0	3
4	PC2103	Surveying	3	0	0	3
5	PC2104	Concrete Technology	3	0	0	3
6	PC2101L	Strength of Material Laboratory	0	0	3	1.5
7	PC2102L	Surveying Field Work	0	0	3	1.5
8	PC2103L	Concrete Technology Laboratory	0	0	3	1.5
9	SOC2101	Skill Oriented Course 1	0	0	4	2
10	MC2101	Essence of Indian Knowledge and Tradition	2	0	0	0
				Т	otal	21.5

II Year I Semester (Semester-3)

	Category	Credits
BS	Basic Science Courses	3
PC	Professional core courses	3+3+3+3+1.5+1.5+1.5=16.5
SOC	Skill Oriented Course	2
	Total Credits	21.5

II Year II Semester (Semester-4)

S.No.	Course Code	Course Name	L	Т	Р	С
1	ES2201	Scientific Computing Using Python	3	0	0	3
2	PC2201	Transportation Engineering	3	0	0	3
3	PC2202	Structural Analysis	3	0	0	3
4	PC2203	Hydraulics & Hydraulic Machinery	3	0	0	3
5	PC2204	Environmental Engineering	3	0	0	3
6	ES2201L	Scientific Computing Using Python Laboratory	0	0	3	1.5
7	PC2202L	Building Planning and Drawing Laboratory	0	0	3	1.5
8	PC2203L	FM & HM Lab	0	0	3	1.5
9	SOC2201	Skill Oriented Course 2	0	0	4	2
				I	Total	21.5
		Internship/Community Service Project				
		2 Months (Mandatory) during summer vacation				
		Honors/Minor courses	3	1	0	4

	Category	Credits
ES	Engineering Science Courses	3+1.5=4.5
PC	Professional core courses	3+3+3+3+3+1.5+1.5=15
SOC	Skill Oriented Course	2
	Total Credits	21.5

S.No.	Course Code	Course Name	L	Τ	Ρ	C
1	HS3101	Engineering Economics And Management	3	0	0	3
2	PC3101	Soil Mechanics	3	0	0	3
3	PC3102	Design and Drawing of Concrete Structures	3	0	0	3
4	OE3101	Open Elective-I	3	0	0	3
5	PE3101	Professional Elective-I	3	0	0	3
6	PC3101L	Environmental Engineering Laboratory	0	0	3	1.5
7	PC3102L	Transportation Engineering Laboratory	0	0	3	1.5
8	PC3103L	Engineering Geology Laboratory	0	0	3	1.5
9	SAC3101	Skill Advanced Course 1	1	0	2	2
10	MC3101	Environmental Studies	2	0	0	0
11	PR	Summer Internship 2 Months (Mandatory) after Second Year (to be evaluated during V semester)	0	0	3	1.5
				То	tal	23
		Honors/Minor courses	3	1	0	4

III Year I Semester (Semester-5)

	Category	Credits
HS	Humanities and Social Science Courses	3
PC	Professional Core Courses	3+3+1.5+1.5+1.5=10.5
PE	Professional Elective Courses	3
OE	Open Elective Courses/Job Oriented Elective Courses	3
SAC	Skill Advanced Course/Soft Skills Course	2
PR	Summer Internship	1.5
MC	Mandatory course (AICTE)	0
	Total Credits	23

III Year II Semester (Semester-6)

S.No.	Course Code	Course Name	L	Τ	P	С
1	HS3201	Universal Human Values	3	0	0	3
2	PC3201	Design and Drawing of Steel Structures	3	0	0	3
3	PE3201	Professional Elective-II	3	0	0	3
4	PE3202	Professional Elective-III	3	0	0	3
5	OE3201	Open Elective-II	3	0	0	3
6	PC3201L	STAAD Laboratory	0	0	3	1.5
7	PC3202L	Geotechnical Engineering Laboratory	0	0	3	1.5
8	SAC3201	Skill Advanced Course 2	1	0	2	2
9	MC3201	Entrepreneurial Skills Development	2	0	0	0
				То	tal	20
		Industrial/Research Internship				
		2 Months (Mandatory) during summer vacation				

	Honors/Minor courses	3	0	2	4
--	----------------------	---	---	---	---

	Credits	
HS	Humanities and Social Science Courses	3
PC	Professional Core Courses	3+3+1.5+1.5=9
PE	Professional Elective Courses	3
OE	Open Elective Courses/Job Oriented Elective Courses	3
SAC	Skill Advanced Course/Soft Skills Course	2
	20	

IV Year I Semester (Semester-7)

S.No.	Course Code	Course Name	L	Τ	Р	С
1	PC4101	Estimation Specification and Contracts	3	0	0	3
2	PC4102	Water Resources Engineering	3	0	0	3
3	PE4102	Professional Elective-IV	3	0	0	3
4	PE4103	Professional Elective-V	3	0	0	3
5	OE4101	Open Elective- III	3	0	0	3
6	OE4102	Open Elective- IV	3	0	0	3
7	SAC4101	Skill Advanced Course 3	1	0	2	2
8	PR	Industrial / Research Internship 2 Months (Mandatory) after Third Year (to be evaluated during VII semester)	0	0	3	3
				То	tal	23
		Honors/Minor courses	3	0	2	4

	Category	Credits
PC	Professional Core Courses	3
PE	Professional Elective Courses	3+3+3=9
OE	Open Elective Courses/Job Oriented Elective Courses	3+3=6
SAC	Skill Advanced Course/Soft Skills Course	2
PR	Summer Internship	3
	Total Credits	23

S. No	Subject code	Course Name	L	Τ	P	С
1	PROJ4201	Major Project Project work, seminar, and internship in industry	0	0	0	12
		Internship (6 months)				
		Т	otal	Crea	lits	12

IV Year II Semester (Semester-8)

Skill oriented course/Skill advanced courses

Subject code	Track-1 (Softwares)	Track-2 (Advanced Technologies)	Track-3 (Field Applications)
SOC2101	Advanced AutoCAD	Smart Contracts	Water & Waste Water Treatment Plant
SOC2201	Digital Land Surveying Laboratory	Machine Learning Applications in Civil Engineering	Foundation Design using Admixtures in Low bearing capacity Soils
SAC3101	Soft skills	Soft skills	Soft skills
SAC3201	Revit Architecture and Energy Analysis/Open Roads	ARVR Applications in Civil Engineering	Analysis & Assessment of New Building Materials Adoption
SAC4101	Bentley Pro-Structures/E- Tabs/IIT Pave/Tekla BIM		Health Monitoring of Structures

Open Elective Courses

Open Elective- I	Open Elective- II	Open Elective- III	Open Elective- IV	
Building Services	Green Technologies	Green Buildings	Safety Engineering	
Disaster Management	Alternative Energy	Low cost Housing	Remote Sensing &	
Disaster Management	Sources	Low cost mousing	GIS	
	Element of Civil			
Troffic Safaty	Engineering	Environmental	Smart Citias	
Traine Salety	(Other than Civil	Pollution and Control	Silian Cities	
	Engineering)			
Project Management	Geo-Spatial	Forensic of Civil	Architecture and	
Project Management	Technologies	Engineering	Town Planning	
I Toressional El	cente courses			
--------------------------------------	--	--	---	---
Professional	Professional	Professional	Professional	Professional
Elective- I	Elective- II	Elective- III	Elective- IV	Elective- V
Advanced Strength of Materials	Earthquake Resistant Design of Structures	Swayam/ NPTEL - / MOOCS Courses (12 Weeks Duration) -	Prestressed Concrete Structures	Finite Element Analysis
Reinforced Soil Structures	Earth Retaining Structures		Special Geotechnical Construction	Ground Improvement Techniques
Air pollution and control	Industrial Waste and Waste water Engineering		Solid Waste Management	Environmental Impact Assessment
Airport Planning and Design	Road Safety Engineering		Pavement Analysis and Design	Transportation Economics
Water Shed Management	Ground Water Development and Management		Urban Hydrology	Irrigation and Hydraulic Strucutres

Professional Elective Courses

Courses for Honors degree

Pool-I (Structural Engineering)	Pool-II (Transportation Engineering)	Pool-III (Geotechnical Engineering)	Pool-IV (Environmental Engineering)
Advanced Concrete Technology	Advanced Traffic Engineering	Advanced Soil Mechanics	Advanced Water Supply Systems
Matrix Methods of Structural Analysis	Pavement Construction, Maintenance and Management	Soil Foundation Interaction	Environment and Ecology
Advanced Reinforced Concrete Design	Transport System and Management	Rock Mechanics	Ground Water Contamination & Remediation
Design of Prestressed Concrete Strucutres	GIS Applications In Transportation Engineering	Construction in Expansive Soils	Water Quality Modelling
MOOC-1*(NPTEL/SWAYAM)Duration: 12 Weeksminimum			
MOOC-2*(NPTEL/SWAYAM)Duration: 12 Weeksminimum			

*Course/subject titlecan't be repeated

Note:

- **1.** Students has to acquire 16 credits with minimum one subject from each pool
- 2. Compulsory MOOC/NPTEL course for 4 credits (2 course, each 2 credited)

General Minor Tracks

Department of Civil Engineering

S.No.	Course Name	L	Т	Р	С
1	Building Materials and Construction	3	0	2	4
2	Surveying	3	0	2	4
3	Environmental Engineering	3	0	2	4
4	Quantity Surveying	3	0	2	4
5	Construction Technology and Management	3	0	2	4
6	Environmental Pollution and Control	3	0	2	4

Note:

- 1. Students can opt any 4 subjects from the pool
- 2. Compulsory MOOC/NPTEL course for 4 credits (2 course, each 2 credited)

VVIT Life skill courses

The following courses are admitted to be the **courses beyond curriculum** to improve individual life skills. These courses and will be demonstrated in the class room and will be having an internal assessment for satisfactory.

S. No	Year and Semester	Course Name
1	I Year I Semester (Semester-1)	Quantitative Aptitude
2	I Year II Semester (Semester-2)	Verbal Ability
3	II Year I Semester (Semester-3)	Understanding Self for Effectiveness
4	II Year II Semester (Semester-4)	Design Thinking
5	III Year I Semester (Semester-5)	Stress and Coping Strategies
6	III Year II Semester (Semester-6)	Research Skills

SYLLABUS

I-Year-I Semester BS1101

Mathematics-I

L	Τ	Р	С
3	0	0	3

Preamble:This course illuminates the students in the concepts of calculus.

Course objectives:

The main objectives are

- 1. To enlighten the learners in the concept of differential equations and multivariable calculus.
- 2. To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real-world problems and their applications.

Unit–1: 13 HOURS
Differential equations of first order and first degree
Linear differential equations-Bernoulli's equations - Exact equations and equations reducible to
exact form.
Applications: Newton's Law of cooling - Law of natural growth and decay - Orthogonal
trajectories – Electrical circuits.
Unit–2: 13 HOURS
Linear differential equations of higher order
Non-homogeneous equations of higher order with constant coefficients - with non-homogeneous
term of the type e^{ax} , $\sin ax$, $\cos ax$, polynomials in x^n , $e^{ax}V(x)$ and $x^nV(x)$ - Method of
Variation of Parameters.
Applications: LCR circuit – Simple harmonic motion
Unit-3: 12 HOURS
Unit-3: 12 HOURS Mean value theorems 12 HOURS
Mean value theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem –
Mean value theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders.
Mean value theorems I2 HOURS Mean value theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders. Unit-4: 14 HOURS
Mean value theorems I2 HOURS Mean value theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders. I4 HOURS Unit-4: 14 HOURS Partial differentiation I4 HOURS
Mean value theorems I2 HOURS Mean value theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders. – Unit-4: 14 HOURS Partial differentiation – Introduction – Homogeneous function – Euler's theorem - Total derivative – Chain rule –
Mean value theorems I2 HOURS Mean value theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders. Ithours Unit-4: 14 HOURS Partial differentiation Introduction – Homogeneous function – Euler's theorem - Total derivative – Chain rule – Jacobian – Functional dependence – Taylor's and Mc Laurent's series expansion of functions of
Mean value theorems I2 HOURS Mean value theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders. – Unit-4: 14 HOURS Partial differentiation – Introduction – Homogeneous function – Euler's theorem - Total derivative – Chain rule – Jacobian – Functional dependence – Taylor's and Mc Laurent's series expansion of functions of two variables.
Mean value theorems Mean value theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders. Unit-4: 14 HOURS Partial differentiation Introduction – Homogeneous function – Euler's theorem - Total derivative – Chain rule – Jacobian – Functional dependence – Taylor's and Mc Laurent's series expansion of functions of two variables. Applications: Maxima and Minima of functions of two variables without constraints and
Mean value theorems I2 HOURS Mean value theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders. I4 HOURS Unit-4: 14 HOURS Partial differentiation Introduction – Homogeneous function – Euler's theorem - Total derivative – Chain rule – Jacobian – Functional dependence – Taylor's and Mc Laurent's series expansion of functions of two variables. Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints).

13 HOURS

Unit–5:

Multiple integrals

Double integrals (Cartesian and Polar) – Change of order of integration – Change of variables (Cartesian to Polar) – Triple integrals.

Applications: Areas by double integrals and Volumes by triple integrals.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	solve the differential equations related to various engineering fields.
CO2	utilize mean value theorems to real life problems.
CO3	familiarize with functions of several variables which is useful in optimization.
CO4	apply double integration techniques in evaluating areas bounded by region.
CO5	learn important tools of calculus in higher dimensions. Students will become familiar with
	2-dimensional and 3 – dimensional coordinate systems.

Text books:

1. **B.S. Grewal,** Higher Engineering Mathematics, 44th Edition, Khanna Publishers.

2. **B.V. Ramana,** Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference books:

- 1. **H. K. Das,** Advanced Engineering Mathematics, 22nd Edition, S. Chand & Company Ltd.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.

Micro-Syllabus of MATHEMATICS – I (Calculus)

Unit-1: Differential equations of first order and first degree:

Linear differential equations-Bernoulli's equations - Exact equations and equations reducible to exact form.

Applications: Newton's Law of cooling – Law of natural growth and decay – Orthogonal trajectories – Electrical circuits.

Unit	Module	Micro content
	Linear differential	Solution of Linear differential equations in 'y'
		Solution of Linear differential equations in 'x'
	equations	Initial value problem
	Non-Linear	Bernoulli's equations
1a. & 2a.	differential equations	Equations reducible to Linear differential equations
Differential equations of	Exact differential equations	Solution of Exact differential equations
first order and	Non-Exact differential equations	Equations reducible to Exact equations
first degree		Integrating factor found by inspection
		Integrating factor of a Homogeneous equation
		Integrating factor for an equation of the type
		$f_1(xy) ydx + f_2(xy) xdy = 0$

		Integrating factor, if $\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}$ be a function of 'x'
		Integrating factor, if $\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M}$ be a function of 'y'
	Application of	Newton's Law of cooling
1b. & 2b.	differential equations	Law of natural growth and decay
Applications	of first order and first	Orthogonal trajectories
	degree	Electrical circuits

Unit-2: Linear differential equations of higher order:

Non-homogeneous equations of higher order with constant coefficients – with non-homogeneous term of the type e^{ax} , $\sin ax$, $\cos ax$, polynomials in x^n , $e^{ax}V(x)$ and $x^nV(x)$ - Method of Variation of Parameters.

Applications: LCR circuit – Simple harmonic motion

Unit	Module	Micro content
3a. & 4a. Linear differential equations of higher order	Homogeneous equations of higher order with constant coefficients	Finding the Complementary function
	Non-homogeneous	Particular integral of the type e^{ax} Particular integral of the type 'sinax' (<i>or</i>) 'cos <i>ax</i> '
	equations of higher order with constant coefficients	Particular integral of the type x^n
		Particular integral of the type $e^{ax} V(x)'$
		Particular integral of the type $'x^n v(x)'$
3b. & 4b. Applications	Applications of Non- homogeneous equations of higher order with constant coefficients	Method of variation of parameters
		LCR circuit
		Basic problems on simple harmonic motion

Unit-3: Mean value theorems:

Mean value theorems (without proofs): Rolle's theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders.

Unit	Module	Micro content
5a. & 6a.	Mean value theorems	Rolle's theorem
Mean value theorems		Lagrange's mean value theorem
5b. & 6b. Mean value theorems	Mean value theorems	Cauchy's mean value theorem
		Taylor's expansions of $f(x)$
		Maclaurin's expansions of $f(x)$

Unit-4: Partial differentiation:

Introduction – Homogeneous function – Euler's theorem - Total derivative – Chain rule – Jacobians – Functional dependence – Taylor's and Mc Laurent's series expansion of functions of two variables.

Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints).

Unit	Module	Micro content
7a. & 8a. Portial	Doutial Differentiation	Euler's theorem
		Total derivative
differentiation		Chain rule
unicientiation		Jacobians
7b. & 8b. Applications	Applications of Partial Differentiation	Taylor's and Mc Laurent's series expansion of functions of two variables
		Maxima and Minima of functions of two variables
		Lagrange's method of undetermined multipliers
Unit-5: Multiple i	ntegrals:	
Double integrals (Cartesian and Polar) – Char	nge of order of integration – Change of variables
(Cartesian to Polar) – Triple integrals.	
Applications: Area	as by double integrals and Vo	plumes by triple integrals.
Unit	Module	Micro content
02 8 102		Double integrals
9a. & 10a. Multiplo	Evaluation of Double Integrals	Change of order of integration
integrals		Double integrals in Polar co-ordinates
integrais		Change of variables
9b. & 10b. Applications	Evaluation of Triple	Triple integrals
	Applications of Multiple	Areas by double integrals
	Integrals	Volumes by triple integrals
	mosimo	i volumes og utple megruis

CO – PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1
CO3	3	2										1
CO4	3	2										1
CO5	3	2										1

I-Year-I Semester BS1102

ENGINEERING PHYSICS

L	Τ	Ρ	С
3	0	0	3

Course objectives:

Engineering Physics curriculum which is re-oriented to the needs of non-circuital branches of graduate engineering courses offered by Vasireddy Venkatadri Institute of Technology, which serves as a transit to understand the branch specific advanced topics.

The course is designed to:

- Impart Knowledge of physicaloptics phenomena like Interference and Diffraction required to design instruments with higher resolution.
- Impart knowledge in basic concepts of LASERs and Holography along with their engineering applications
- > Impart the knowledge of materials with characteristic utility in appliances.
- Impart the knowledge on acoustic quality of concert halls and concepts of flaw detection techniques using ultrasonic.
- Study the structure- property relationship exhibited by solid materials within the elastic limit.

Unit-I: Wave Optics:

Interference:PrincipleofSuperposition-Interferenceoflight – ConditionsforsustainedInterference-Interference in thin films (reflected geometry) - Newton's Rings (reflected geometry)

Diffraction:Fraunhofer Diffraction: - Diffraction due to single slit (quantitative), double slit(qualitative), N –slits(qualitative) and circular aperture (qualitative) – Intensity distribution curves - Diffraction grating – Grating spectrum – missing order– resolving power – Rayleigh's criterion – Resolving powers of Microscope(qualitative), Telescope(qualitative) and grating (qualitative).

Unit– II: LASERs and Holography

LASERs: Interaction of radiation with matter – Spontaneous and Stimulated emission of radiation – population inversion – Einstein's coefficients & Relation between them and their significance - Pumping Mechanisms - Ruby laser – Helium-Neon laser – Applications.

Holography: Introduction – principle – differences between photography and holography – construction and reconstruction of hologram – applications of holograms

Unit-III: Magnetism and Dielectrics

Magnetism: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability- Origin of permanent magnetic moment - Bohr Magneton-Classification of magnetic materials: Dia, para & Ferro – Domain concept of Ferromagnetism - Hysteresis – soft and hard magnetic materials – applications of Ferromagnetic material.

Dielectrics: Introduction- Dielectricpolarization, Dielectric polarizability, Susceptibility and Dielectricconstant- Types of polarizations: Electronic and Ionic (Quantitative), Orientation Polarizations (Qualitative) - Lorentz Internal field-Claussius –Mossotti's equation- Frequency dependence of polarization - Applications of dielectrics.

Unit-IV: ACOUSTICS AND ULTRASONICS

Acoustics: Introduction – Reverberation - Reverberation time - Sabine's formula-absorption

13 HOURS

13 HOURS

13 HOURS

15 HOURS

coefficient and its determination- factors affecting acoustics of buildings and their remedies. **Ultrasonics**: Properties –Production of ultrasonics by Magnetostriction & Piezoelectric methods –Non-Destructive Testing – pulse echo system through transmission and reflection modes - A, B and C – scan displays–applications.

Unit-V: ELASTICITY

11 HOURS

Stress & strain — stress & strain curve – generalized Hooke's law – different types of moduli and their relations – bending of beams – Bending moment of a beam – Depression of cantilever.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand the principles such as interference and diffraction to design and enhance the resolving power of various optical instruments.
CO2	Learn the basic concepts of LASER light Sources and Apply them to holography
CO3	Study the magnetic and dielectric materials to enhance the utility aspects of materials.
CO4	Analyze acoustic properties of typically used materials in buildings
CO5	Understand the concepts of shearing force and moment of inertia

Text books:

- 1. "Engineering Physics" by B. K. Pandey, S. Chaturvedi Cengage Publications, 2012
- 2. "A Text book of Engineering Physics" by M.N. Avadhanulu, P.G.Kshirsagar S.Chand, 2017.
- 3. "Engineering Physics" by D.K.Bhattacharya and Poonam Tandon, Oxford press (2015).
- 4. "Engineering Physics" by R.K Gaur. and S.L Gupta., Dhanpat Rai publishers, 2012.

Reference books:

- 1. "Engineering Physics" by M.R.Srinivasan, New Age international publishers (2009).
- 2. "Optics" by AjoyGhatak, 6th Edition McGraw Hill Education, 2017.
- 3. "Solid State Physics" by A.J.Dekker, Mc Millan Publishers (2011).

Micro-Syllabus of Engineering Physics

Unit-I: Wave Optics:

Interference: Principle of Superposition – Interference of light – Conditions for sustained Interference – Interference in thin films (reflected geometry) - Newton's Rings (reflected geometry) **Diffraction:** Fraunhofer Diffraction:- Diffraction due to single slit (quantitative), double slit(qualitative), N –slits(qualitative) and circular aperture (qualitative) – Intensity distribution curves - Diffraction grating – Grating spectrum – missing order– resolving power – Rayleigh's criterion – Resolving powers of Microscope(qualitative), Telescope(qualitative) and grating (qualitative).

Unit	Module	Micro content
	D · · 1 · C	Introduction to interference
In Interforman	Principle of	Principle of superposition
ia. Interference	Interference of light	Coherence
	Interference of fight	Conditions for sustained Interference

		Interference in thin films by reflection (cosine's
	Interference in thin	law)
	films	Complementary nature
		Colours of thin film
		Newton's Rings(reflected geometry)
	Numero a Dina a	Experimental arrangement & conditions for
	Newton's Rings	diameters
		Applications: determination of wavelength of
		monochromatic source and refractive index of the
		given transparent liquid.
		Differences between Fresnel's and Fraunhofer's
	Froundofor	diffraction
	Diffraction	Differences between interference and diffraction
	Diffraction due to	Fraunhofer diffraction due to single
	single slit	slit(quantitative)
	single site	Fraunhofer diffraction due to circular aperture
		(qualitative)
		Fraunhofer diffraction due to double slit
Ib. Diffraction	double slit	(qualitative)
	(qualitative) & N –	Fraunhofer diffraction due to grating
	slits(qualitative)	(N- slits) (qualitative)
		Intensity distribution curves
		Grating spectrum, missing orders and maximum
	Diffraction gratingly	number of orders possible with a grating
	Diffraction grating &	Rayleigh's criterion for resolving power
	Resolving powers	Resolving power of grating, Telescope and
		Microscope (qualitative)
Unit–II: LASERs	and Holography	
LASERs: Interacti	on of radiation with r	natter – Spontaneous and Stimulated emission of

LASERS: Interaction of radiation with matter – Spontaneous and Stimulated emission of radiation – population inversion – Einstein's coefficients & Relation between them and their significance - Pumping Mechanisms - Ruby laser – Helium-Neon laser – Applications. **Holography:** Introduction – principle – differences between photography and holography – construction and reconstruction of hologram – applications of holograms

Unit	Module	Micro content
	Interaction of	Introduction to LASERS
	radiation with matter	Spontaneous emission
		Stimulated emission
		Einstein's coefficients
IIa. LASERs	Einstein's	Population inversion
	coefficients	Pumping mechanisms
	LASERS construction and	Ruby laser
		Helium-Neon laser
	working	Applications of Lasers
IIb. Holography	Principle of	Introduction and Principle of holography

holography	Differences between photography and holography				
construction and	Construction of hologram				
reconstruction of	Reconstruction of hologram				
hologram	Applications of holography				

Unit-III: Magnetism and Dielectrics

Magnetism: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability- Origin of permanent magnetic moment - Bohr magneton-Classification of magnetic materials: Dia, para & Ferro – Domain concept of Ferromagnetism - Hysteresis – soft and hard magnetic materials – applications of Ferromagnetic material.

Dielectrics: Introduction- Dielectric polarization-Dielectric polarizability, Susceptibility and Dielectric constant- Types of polarizations: Electronic and Ionic (Quantitative), Orientation Polarizations (Qualitative) - Lorentz Internal field-Claussius –Mossotti's equation- Frequency dependence of polarization - Applications of dielectrics.

Unit	Module	Micro content
	Introduction& Origin of permanent magnetic moment	Introduction to Magnetism, Definitions of Magnetic dipole moment, Magnetization, Magnetic susceptibility and Permeability Origin of magnetic moment
		Bohr magneton
	Classification of	Dia magnetic materials
IIIa. Magnetism	magnetic materials	Para magnetic materials
		Ferro magnetic materials
		Domain concept of Ferromagnetism
	Domain concept of Ferromagnetism &	Hysteresis Curve
		Soft and hard magnetic materials classification
	Hysteresis	based on Hysteresis Curve
		Applications of magnetic materials
		Introduction to dielectrics
	Introduction& definitions	Dielectric polarization, Dielectric polarizability, susceptibility
		Dielectric constant
	Types of	Electronic polarization (Quantitative)
IIIb. Dielectrics	nolarizations	Ionic polarization (Quantitative)
	polarizations	Orientational polarizations (Qualitative)
	Internal field &	Lorentz Internal fields in solids
	Claussing _	Clausius-Mossotti's equation
	Mossotti's equation	Frequency dependence of polarization
	General Sequencin	Applications of Dielectrics

Unit-IV: ACOUSTICS AND ULTRASONICS

Acoustics: Introduction – Reverberation - Reverberation time - Sabine's formula–absorption coefficient and its determination- factors affecting acoustics of buildings and their remedies. Ultrasonics: Properties –Production of ultrasonics by Magnetostriction & Piezoelectric methods –Non-Destructive Testing – pulse echo system through transmission and reflection modes - A, B and C – scan displays–applications.

Unit	Module	Micro content					
	Introduction P	Introduction to acoustics					
	Introduction &	Definition of Reverberation					
	Reverberation	Definition of Reverberation time					
	Salina'a fammala o	Sabine's formula derivation					
IVa. Acoustics	Sabine's formula &	Absorption coefficient					
	absorption	Determination of Absorption coefficient					
	Factors affecting	Basic requirements for acoustically good halls					
	acoustics of	Factors affecting acoustics of buildings and their					
	buildings	remedies					
		Introduction and Properties of Ultrasonics					
	Properties	Production of ultrasonics by Magnetostriction					
	&Production of	method					
	ultrasonics	Production of ultrasonics by Piezoelectric method					
IVh Illtrasonics	Non-Destructive	Non-Destructive Testing using Pulse echo system					
	Testing	Non-Destructive Testing through transmission and					
	1.000008	reflection modes					
		A - Scan					
	Different scanning	B - Scan					
	techniques	C - Scan					
		Applications of Ultrasonics					
Unit-V: ELASTIC	CITY: Stress & strain	-stress &strain curve- generalized Hooke's law -					
different types of m	oduli and their relations	- bending of beams - Bending moment of a beam -					
Depression of cantil	ever.						
Unit	Module	Micro content					
		Introduction to Elasticity, Stress & Strain					
	Stress & strain	Stress & Strain curve (Behavior of a wire under					
	Suess & suam	increasing load)					
		Generalized Hooke's law					
	Different types of	Young's modulus, Bulk modulus, Rigidity modulus					
V.ELASTICITY	moduli and their	and Poisson's ratio					
	relations	Relations among Young's, Bulk and Rigidity					
		moduli					
		Bending of beams					
	Bending of beams	Bending moment of a beam					
		Cantilever and depression of cantilever (Cantilever					
		supported at its ends and loaded in the middle)					

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1
CO3	3	2										1

HS1101			_	Com	muni	cative	Engli	sh	3	0	0	<u> </u>	
I-Voor-I Somester									T	Т	Р	С	
	CO5	3	2									1	
	CO4	3	2									1	

Course objectives:

The main objectives are

- 1. Adopt activity-based teaching-learning methods to ensure that learners would be engaged in use of language both in the classroom and laboratory sessions.
- 2. Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- 3. Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- 4. Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- 5. Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- 6. Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Unit – 1:

Detailed Study: A Proposal to Girdle the Earth (Excerpt) by Nellie Bly Theme: Exploration

Listening: Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions.

Speaking: Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others. **Reading:** Skimming to get the main idea of a text; scanning to look for specific pieces of information.

Reading for Writing: Beginnings and endings of paragraphs - introducing the topic, summarizing the main idea and/or providing a transition to the next paragraph.

Grammar and Vocabulary: Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countable and uncountable; singular and plural; basic sentence structures; simple question form - wh-questions; word order in sentences.

Non-Detailed Study:

1. "How to Fashion Your Own Brand of Success" by Howard Whitman

2. "How to Recognize Your Failure Symptoms" by Dorothea Brande

Unit-2:

13 HOURS

13 HOURS

Detailed Study: An excerpt from The District School as It Was by One Who Went to It by Warren Burton

Theme: On Campus

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts.

Speaking: Discussion in pairs/ small groups on specific topics followed by short structured talks. **Reading:** Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Writing: Paragraph writing (specific topics) using suitable cohesive devices; mechanics of

13 HOURS

13 HOURS

13 HOURS

writing - punctuation, capital letters.

Grammar and Vocabulary: Cohesive devices - linkers, signposts and transition signals; use of articles and zero article; prepositions.

Non-detailed Study:

3. "How to Conquer the Ten Most Common Causes of Failure" by Louis Binstock

4. "How to Develop Your Strength to Seize Opportunities" by Maxwell Maltz

Unit-3:

Detailed Study: The Future of Work?

Theme: Working Together

Listening: Listening for global comprehension and summarizing what is listened to.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed

Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension.

Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions.

Grammar and Vocabulary: Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Non-Detailed Study:

5. "How to Make the Most of Your Abilities" by Kenneth Hildebrand

6. "How to Raise Your Self-Esteem and Develop Self-confidence" by James W Newman

Unit-4:

Detailed Study: H.G Wells and the Uncertainties of Progress by Peter J. Bowler Theme: Fabric of Change

Listening: Making predictions while listening to conversations/ transactional dialogues without video; listening with video.

Speaking: Role-plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions.

Reading: Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data.

Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables.

Grammar and Vocabulary: Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms

Non-Detailed Study

7. "How to Win Your War against Negative Feelings" by Dr Maxwell Maltz

8. "How to Find the Courage to Take Risks" by Drs. Tom Rusk and Randy Read

Unit-5:

Detailed Study: Leaves from the Mental Portfolio of a Eurasian by Sui Sin Far Theme: Tools for Life

Listening: Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension.

Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides.

Reading: Reading for comprehension.

Writing: Writing structured essays on specific topics using suitable claims and evidences Grammar and Vocabulary: Editing short texts – identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement) Non-Detailed Study

9. "How to Become a Self-Motivator" by Charles T Jones 10. "How to Eliminate Your Bad Habits" by OgMandino

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	identify the context, topic, and pieces of specific information from social or transactional
	dialogues spoken by native speakers of English and formulate sentences using proper
	grammatical structures and correct word forms (Describe, relate, tell, find L-3)
CO2	speak clearly on a specific topic using suitable discourse markers in informal discussions
	(Discuss, outline, explain, predict – L3)
CO3	write summaries based on global comprehension of reading/listening texts (Use,
	categorize, complete, solve L-3)
CO4	produce a coherent paragraph interpreting a figure/graph/chart/table (Identify, compare,
	explain, illustrate- L4)
CO5	take notes while listening to a talk/lecture to answer questions (explain, relate, outline,
	complete -L3)

Text books:

- 1. English All Round: Communication Skills for Undergraduate Learners-Volume 1, Orient Black Swan, 2019
- 2. University of Success by OgMandino, Jaico, 2015.

Reference books:

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.

AICTE Recommended Books

- 5. Meenakshi Raman and Sangeeta Sharma. Technical Communication. Oxford University Press, 2018.
- 6. Pushplata and Sanjay Kumar. Communication Skills, Oxford University Press, 2018.
- 7. Kulbushan Kumar. Effective Communication Skills. Khanna Publishing House, Delhi

Sample Web Resources

Grammar / Listening / Writing

1-language.com

http://www.5minuteenglish.com/ https://www.englishpractice.com/

Grammar/Vocabulary

English Language Learning Online http://www.bbc.co.uk/learningenglish/

http://www.better-english.com/

http://www.nonstopenglish.com/

https://www.vocabulary.com/

BBC Vocabulary Games

Free Rice Vocabulary Game

Reading

https://www.usingenglish.com/comprehension/ https://www.englishclub.com/reading/short-stories.htm https://www.english-online.at/

Listening

https://learningenglish.voanews.com/z/3613

http://www.englishmedialab.com/listening.html

Speaking

https://www.talkenglish.com/ BBC Learning English – Pronunciation tips Merriam-Webster – Perfect pronunciation Exercises **All Skills** https://www.englishclub.com/ http://www.world-english.org/ http://learnenglish.britishcouncil.org/

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1									2	3		1
CO2									2	3		1
CO3									2	3		1
CO4									2	3		1
CO5									2	3		1

I-Year-I Semester ES1101

ENGINEERING GRAPHICS

L	Τ	Ρ	С
1	0	4	3

Course objectives:

The main objectives are

- 1. Expose the students to use Drafting packages for generating Engineering curves and conventions followed in Preparation of engineering drawings.
- 2. Make the students to understand the concepts of orthographic projections of Lines and Plane Surfaces.
- 3. To understand the concepts of orthographic projections of Regular Solids.
- 4. Develop the ability of understanding sectional views and Development of Solid Surfaces.
- 5. Enable them to use computer aided drafting packages for Conversion of Isometric view to Orthographic Projection and vice versa.

UNIT-I: INTRODUCTION TO AUTOCAD:

Basic commands, Customization, ISO and ANSI standards for coordinate dimensioning, Annotations, layering, 2D drawings of various mechanical components, 2D drawings of various electrical and electronic circuits. Creation of engineering models- floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. Applying colour coding according to building drawing practice; (Experiments should be Planned According to respective Core Branch Applications)

UNIT-II: THEORY OF PROJECTION:

Principles of Orthographic Projections-Convention: Projections of Points, Projections of Lines inclined to both planes, Projections of planes inclined to one Plane & Projections of planes inclined to both Planes

UNIT III: PROJECTIONS OF REGULAR SOLIDS

Projections of Solids –with the axis perpendicular to one of the principal planes, with the axis Inclined to one of the principal planes, Projections of Solids –with the axis Inclined to Both the principal planes

UNIT IV: DEVELOPMENT OF SURFACES & SECTIONAL ORTHOGRAPHIC VIEWS 13 HOURS

Development of surfaces of Right Regular Solids – Prism, Pyramid, Cylinder and, Cone. Draw the sectional orthographic views of geometrical solids

UNIT V: ISOMETRIC PROJECTIONS

Conversion of isometric views to orthographic views, drawing of isometric views - simple Solids, Conversion of orthographic views to isometric views of simple Drawings

12 HOURS

15 HOURS

12 HOURS

13 HOURS

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Prepare engineering drawings as per BIS conventions Understand level, KL2}
CO2	Produce computer generated of orthographic projections of Lines and Plane surfaces using
	CAD software {Apply level, KL3}
CO3	Use the knowledge of orthographic projections of Solids to represent engineering information/concepts and present the same in the form of drawings
	{Apply level, KL3}
CO4	Use the knowledge of sectional views and Development of Solid Surfaces in Real time
	Applications {Apply level, KL3}
CO5	Develop isometric drawings of simple objects reading the orthographic projections of
	those objects {Analyze level, KL4}

Text books:

- 1. Engineering Drawing by N.D. Butt, Chariot Publications
- 2. Engineering Graphics with Autocad by Kulkarni D.M, PHI Publishers
- 3. Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, New Age
- 4. Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers

Reference books:

- 1. Engineering Drawing by K.L.Narayana& P. Kannaiah, Scitech Publishers
- 2. Engineering Graphics for Degree by K.C. John, PHI Publishers
- 3. Engineering Graphics by PI Varghese, McGrawHill Publishers
- 4. AutoCAD 2018 Training Guide (English, Paperback, Sagar Linkan) ISBN: 9789386551870, 938655187X RUPAPUBLICATIONS

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	_	3	_	_	_	_	2	_	1
CO2	2	1	1	_	3	_	_	_	_	2	_	1
CO3	2	2	2	_	3	_	_	_	_	2	_	1
CO4	2	2	2	_	3	_	_	_	_	2	_	1
CO5	2	2	2	_	3	_	_	_	_	2	_	1

CO-PO Mapping:

I-Year-I Semester ES1102

Problem Solving using C

L	Τ	Р	С
3	0	0	3

Course objectives:

The main objectives are

- 1. To familiarize to notion of an algorithm, editing and executing programs in Linux.
- 2. To Understanding branching, iteration.
- 3. To represent Data using arrays.
- 4. To use Modular programming and recursive solution formulation.
- 5. To familiarize pointers and dynamic memory allocation.
- 6. To handle data through files

UNIT-I: Introduction to C

Introduction to Computers: hardware, Memory hierarchy, Types of Computers, Types of Software – Operating Systems, Translators, Device drivers and packages. Algorithms and its characteristics, Program development steps. Structure of a C program, Features of C, The main () Function, Standard I/O functions.

Programming Style - Indentation, Comments, Identifiers, Data Types, Operators, Precedence and Associativity. Variables and Declarations, Format Modifiers, Escape Sequences, Types of Statements

Casting - Implicit Type Conversions, Explicit Type Conversions, Mathematical Library Functions

UNIT-II: Control Flow & Modules

Selection: if-else Statement, nested if, examples, Multiway selection: switch, else-if, examples. **Repetition**: Basic Loop Structures, Pre-test and Post-test Loops, Counter-Controlled andCondition-Controlled Loops, for, while and do while.

Branching: break & continue.

Modular Programming: Function and Parameter Declarations, Returning a Value, Types of parameters. Parameter – scalar data as argument.

Recursion: Definition, Base condition for recursion, Mathematical Recursion, Recursion versus Iteration.

UNIT-III Arrays & Strings

Arrays: Introduction to Arrays, Input and Output of Array Values, Array Initialization, Arrays as Function Arguments, Two-Dimensional Arrays, Larger Dimensional Arrays- Matrices, 1D & 2D arrays as arguments.

Strings: String Fundamentals, String Input and Output, String Processing, Library Functions, Strings as arguments.

Unit – IV Pointers & Structures

14 HOURS

12 HOURS

Pointers: Concept of a Pointer, Initialization of Pointer variables, Pointers as function arguments, Passing by address, Dangling memory, Pointer Arithmetic, Character pointers, Pointers to Pointers, Array of pointers & Pointer to array, Dynamic memory management functions, Command line Arguments.

13 HOURS

13 HOURS

Structures: Derived types, Structure's declaration, Initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self-referential structures, unions, typedef, enum, bit-fields.

UNIT-V: Files

13 HOURS

Storage classes – auto, static, extern, register. Pre-processor statements

Data Files: Declaring, Opening, and Closing File Streams, File handling functions, Reading from and Writing to Text Files, File copy, merge, Writing and reading records, Random File Access.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1 Understand algorithms and basic terminology of C

CO2 | Solve problems using control structures and modular approach

CO3 | Make use of 1D and 2D arrays along with strings for linear data handling

CO4 Determine the use of pointers and structures

CO5 Implement various operations on data files.

Text books:

- 1. ANSI C Programming, E Balaguruswamy, Mc-GrawHill, 5th Edition
- 2. ANSI C Programming, Gary J. Bronson, Cengage Learning.
- 3. Programming in C, ReemaThareja, OXFORD Publications

Reference books:

- 1.C Programming-A Problem Solving Approach, Forouzan, Gilberg, Cengage.
- 2. Let us C, YashwantKanetkar, BPB Publications
- 3. Mastering in C, KR Venu Gopal, TMH

Micro-Syllabus of Problem Solving and Programming in C

UNIT I: Introduction to Computers: Hardware, Memory hierarchy, Types of Computers, Types of Software – Operating Systems, Translators, Device drivers and packages. Algorithms and its characteristics, Program development steps. Structure of a C program, Features of C, The main () Function, Standard I/O functions.

Programming Style - Indentation, Comments, Identifiers, Data Types, Operators, Precedence and Associativity. Variables and Declarations, Format Modifiers, Escape Sequences, Types of Statements

Casting - Implicit Type Conversions, Explicit Type Conversions, Mathematical Library Functions

Unit	Module	Micro content
		Components of Computer: Hardware & Software
	Tutur da sti su ta	Algorithm and its characteristics
Introduction to C	Introduction to	Program development steps
	Computers	Structure of a C Program
		Features of C

		The main () function and standard I/O functions			
		Indentation, Comments, Identifiers, Data Types			
	Programming Style	Operators, Precedence and Associativity.			
		Variables and Declarations			
		Format Modifiers, Escape Sequences			
		Types of Statements			
		Implicit Type Conversions			
	Casting	Explicit Type Conversions			
		Mathematical Library Functions			

UNIT II: Selection: if-else Statement, nested if, examples, Multi-way selection: switch, else-if, examples. **Repetition**: Basic Loop Structures, Pre-test and Post-test Loops, Counter-Controlled andCondition-Controlled Loops, for, while and do while.

Branching: break & continue.

Modular Programming: Function and Parameter Declarations, Returning a Value, Types of parameters. Parameter – scalar data as argument.

Recursion: Definition, Base condition for recursion, Mathematical Recursion, Recursion versus Iteration.

	Selection	if else, nested if examples						
	Statements	Multi Way Selection: switch, else if examples						
	Iterative	Counter Controlled Loops						
	Statements	Logic Controlled Loops						
	Unconditional	Prook & Continuo						
Control Flow &	Branching	Dieak & Continue						
Modular		Function and Parameter Declarations						
Programming	Modular	Returning a Value						
	Programming	Types of parameters. Parameter – scalar data as						
		argument.						
		Definition, Base condition for recursion						
	Recursion	Mathematical Recursion						
		Recursion versus Iteration						

UNIT III: Arrays: Introduction to Arrays, Input and Output of Array Values, Array Initialization, Arraysas Function Arguments, Two-Dimensional Arrays, Larger Dimensional Arrays- Matrices, 1D & 2D arrays as arguments.

Strings: String Fundamentals, String Input and Output, String Processing, Library Functions, Strings as arguments.

	Arrays	Introduction to Arrays, Input and Output of Array Values, Array Initialization Arraysas Function Arguments				
	Allays	Two-Dimensional Arrays, Larger Dimensional Arrays				
Arrays & Strings		Matrices, 1D & 2D arrays as arguments				
	Strings	String Fundamentals, String Input and Output				
		String Processing, Library Functions				
	_	Strings as arguments				
UNIT IV: Pointers: Concept of a Pointer, Initialization of Pointer variables, Pointers as function						

arguments, Passing by address, Dangling memory, Pointer Arithmetic, Character pointers, Pointers to Pointers, Array of pointers & Pointer to array, Dynamic memory management functions, Command line Arguments.

Structures: Derived types, Structures declaration, Initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self-referential structures, unions, typedef, enum, bit-fields.

		Concept of a Pointer, Initialization of Pointer variables				
		Pointers as function arguments, Passing by address				
		Dangling memory, Pointer Arithmetic, Character				
	Pointers	pointers				
		Pointers to Pointers				
		Dynamic Memory Allocation				
		Pointer to Arrays and Array of Pointers				
Pointers and	Command line	Commond line Arguments				
Structures	Arguments	Command line Arguments				
		Derived types, Structures declaration, Initialization of				
		structures				
		Accessing structures, nested structures, arrays of				
	Structures	structures				
		structures and functions, pointers to structures, self-				
		referential structures				
		Unions, typedef, enum, bit-fields.				

UNIT V: Storage classes – auto, static, extern, register. Preproessor statements **Data Files**: Declaring, Opening, and Closing File Streams, File handling functions, Reading from and Writing to TextFiles, File copy, merge, Writing and reading records, Random File Access.

Storage Classes	Storage Classes	auto, static, extern and register				
and Files	Preprocessor	Proprocessor Statements				
	Statements	riepiocessoi Statements				
		Declaring, Opening, and Closing File Streams				
		File handling functions, Reading from and Writing to				
	Data Files	TextFiles				
		File copy, merge, Writing and reading records				
		Random File Access				

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂
CO1	1	2	3	2	1	-	-	-	3	3	1	2	1	2
CO2	2	3	3	2	-	-	-	-	1	1	2	2	2	2
CO3	3	3	3	2	-	-	-	-	2	1	2	2	2	3
CO4	2	2	2	2	-	-	-	-	2	1	2	2	2	2
CO5	2	2	2	2	-	-	-	-	2	1	2	2	1	2

I-Year-I Semester HS1101L

COMMUNICATIVE ENGLISH LAB

L	Т	Р	С
0	0	3	1.5

Course Objective:

The main objective of the course is to adopt activity-based teaching-learning methods to ensure that learners would be engaged in use of language both in the classroom and laboratory sessions and appear confidently for competitive examinations for career development.

The specific objectives of the course are to

- 1. Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native and non-native speakers
- 2. Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials like newspapers, magazines, periodicals, journals, etc.
- 3. Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- 4. Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- 5. Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Course Outcomes

At the end of the course, the learners will be able to

- **CO1.** identify the context, topic, and pieces of specific information from social or transactional dialogues spoken by native speakers of English and speak clearly on a specific topic using suitable discourse markers in informal discussions (L3)
- **CO2.** take notes while listening to a talk/lecture; to answer questions in English; formulate sentences using proper grammatical structures and correct word forms; and use language effectively in competitive examinations (L3)
- **CO3.** write summaries based on global comprehension of reading/listening texts; produce a coherent write-up interpreting a figure/graph/chart/table; and use English as a successful medium of communication. (L3)

Detailed Syllabus

Introduction to Sound system of English

Articulation - Airstream mechanism, Manners of Articulation, Places of Articulation, English phonetic symbols.

Accent - Syllabification, word stress and accent, stress rules and stress shift, exceptions to rules.

Intonation - Stress and accent in connected speech. Types and functions of Intonation in English.

I. A. Speaking: Introducing Yourself and Others

B. Listening:Conversation between two and more people.

II. **A. Speaking:** Speak for a minute in response to a question about personal experience / wish.

B. Listening:Identifying the main idea of a talk or a conversation

III. A. Speaking: Group discussion – 5 minutes followed by a summary –1 or 2 minutes: Topics-1. Features that make a place beautiful, 2. The most challenging job you can think of, 3. Some skills that everyone should learn, 4. The best criteria to measure success, 5. A recent news story that is interesting, 6. Impact of technology on the music industry, 7. An app that has helped society, 8. Pros and Cons of after school tutorials, 9. How to stay safe on Social Media, 10. The most common reasons why friendships fall apart, 11. Interactions with seniors on campus, 12. Coping with peer pressure, 13. Others' opinion vs your belief, 14. Feeling that plants would express if they could, 15. Growing up alone vs Growing up with siblings, 16. Uniforms stifle individuality, 17. In India summer is the best and worst of times, 18. A good sense of humour is a definite perk, 19. All fast food is not junk food and 20. Ideas to make your common room in college more inviting. Question Answer sessions - 1. Idea of a Tech Startup, 2. Training programme of T&P Cell, 3. Inter-college Cultural Fest, 4. 3-day Foreign University delegation visit to the campus, 5. Computer training programme by a reputed MNC, 6. Shifting your Dept or Classrooms to new location on campus, 7. How to manage attendance while attending additional courses (Minors/Honors), 8. How to choose placement offers? 9. Involvement in Student Affairs through SAC, 10. Planning an excursion.

B. Listening:1. Comprehension Exercise on Teamwork, 2. Predicting what the speaker would say from the title of the talk, 3. Comprehension based on a narrative or a short video, TED Talks

IV. A. Speaking: Preparing speech using picture clues, asking Q&A using pictures.B. Listening: Listening Comprehension using short films, audio files, interviews of famous personalities

V. A. Speaking: Preparing 30-day planner, Using important phrasal expressions in speech, Oral Presentations on -1. Setting goals is important2. Asking the right question is the skill you need to develop, 3. Do college students want their parents' attention4. Everyone needs to learn how to cook5. Doing household chores is everyone's responsibility 6. Study groups facilitate peer-monitoring7. Is it OK for students to do things just because they want to fit in? 8. Students should compulsorily make time for physical activity, 9. Taking breaks to pursue other interests improves academic performance, 10. Strategies to avoid stress, 11. How best to use the media for educational activities, 12. Why volunteer for service activities? 13. International student exchange programme, 15. Work-life balance 16. Strategies to build on your strength and overcome weaknesses, 17. Strategies to build confidence and self-esteem18. Procrastination kills opportunities, 19. Setting a budget and sticking to it, 20. Grooming and etiquette 21. Pros and Cons of being Competitive, 22. Virtual classroom vs real classroom, 23. Freedom brings more responsibility 24. To-do lists help you become more productive 25. Having a diverse group of friends is an asset 26. One thing you wish you had learnt in High school 27. Why is it important to be non-judgmental towards others? 28. Humans need empathy, 29. Public speaking is a necessary skill 30. How to build and maintain good professional relationships.

B. Listening: Listening Comprehension, Speeches by Famous personalities

Pair work, Role-play, conversational practice and Individual speaking activities based on following essays from University of Success.

- 1. "How to Fashion Your Own Brand of Success" by Howard Whitman
- 2. "How to Recognize Your Failure Symptoms" by Dorothea Brande
- 3. "How to Conquer the Ten Most Common Causes of Failure" by Louis Binstock
- 4. "How to Develop Your Strength to Seize Opportunities" by Maxwell Maltz
- 5. "How to Make the Most of Your Abilities" by Kenneth Hildebrand
- 6. "How to Raise Your Self-Esteem and Develop Self-Confidence" by James W. Newman
- 7. "How to Win Your War against Negative Feelings" by Dr Maxwell Maltz
- 8. "How to Find the Courage to Take Risks" by Drs. Tom Rust and Randy Reed
- 9. "How to Become a Self-Motivator" by Charles T Jones
- 10. "How to Eliminate Your Bad Habits"byOgMandino

Text Books

- 1. English All Round: Communication Skills for Undergraduate Learners-Volume 1, Orient Black Swan, 2019
- 2. University of Success by OgMandino, Jaico, 2015.

Reference Books

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. *Pathways: Listening, Speaking and Critical Thinking.* Heinley ELT; 2ndEdition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.

AICTE Recommended Books

- 1. Meenakshi Raman and Sangeeta Sharma. *Technical Communication*. Oxford University Press, 2018.
- 2. Pushplata and Sanjay Kumar. Communication Skills, Oxford University Press, 2018.
- 3. Kulbushan Kumar. Effective Communication Skills. Khanna Publishing House, Delhi

Sample Web Resources

Grammar / Listening / Writing

- 1. 1-language.com
- 2. http://www.5minuteenglish.com/
- 3. https://www.englishpractice.com/ Grammar/Vocabulary
- 4. English Language Learning Online
- 5. http://www.bbc.co.uk/learningenglish/
- 6. http://www.better-english.com/
- 7. http://www.nonstopenglish.com/
- 8. https://www.vocabulary.com/
- 9. BBC Vocabulary Games
- 10. Free Rice Vocabulary Game

Reading

- 11. https://www.usingenglish.com/comprehension/
- 12. https://www.englishclub.com/reading/short-stories.htm
- 13. https://www.english-online.at/

Listening

- 14. https://learningenglish.voanews.com/z/3613
- 15. http://www.englishmedialab.com/listening.html Speaking
- 16. https://www.talkenglish.com/
- 17. BBC Learning English Pronunciation tips
- 18. Merriam-Webster Perfect pronunciation Exercises All Skills
- 19. https://www.englishclub.com/
- 20. http://www.world-english.org/ http://learnenglish.britishcouncil.org/

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1									2	3		1
CO2									2	3		1
CO3									2	3		1

I-Year-I Semester BS1102L

ENGINEERING PHYSICS LAB

L	Τ	Ρ	С
0	0	3	1.5

Course Objectives:

The Applied Physics Lab is designed to:

- Understand the concepts of interference and diffraction and their applications.
- > Apply the concept of LASER in the determination of wavelength.
- ▶ Recognize the importance of energy gap in the study of conductivity and Hall Effect.
- > Illustrate the magnetic and dielectric materials applications.
- > Apply the principles of semiconductors in various electronic devices.

Course Outcomes:

The students will be able to:

- 1. Operate optical instruments like microscope and spectrometer
- 2. Determine thickness of a paper with the concept of interference
- 3. Estimate the wavelength of different colours using diffraction grating and resolving power
- 4. Plot the intensity of the magnetic field of circular coil carrying current with distance
- 5. Calculate the band gap of a given semiconductor

LIST OF EXPERIMENTS(Any 10 of the following listed 15 experiments)

- 1. Determination of wavelength of a Source-Diffraction Grating-Normal incidence.
- 2. Newton's rings Radius of Curvature of Plano Convex Lens.
- 3. Determination of thickness of a spacer using wedge film and parallel interference fringes.
- 4. Magnetic field along the axis of a current carrying coil Stewart and Gee's apparatus.
- 5. Energy Band gap of a Semiconductor p n junction.
- 6. Characteristics of Thermistor Temperature Coefficients
- 7. Determination of dielectric constant by charging and discharging method
- 8. Variation of dielectric constant with temperature
- 9. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 10. LASER Determination of wavelength by plane diffraction grating
- 11. Verification of laws of vibrations in stretched strings Sonometer.
- 12. Determine the radius of gyration using compound pendulum
- 13. Rigidity modulus of material by wire-dynamic method (torsional pendulum)
- 14. Dispersive power of diffraction grating.
- 15. Determination of Hall voltage and Hall coefficients of a given semiconductor using Hall Effect.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1
CO3	3	2										1
CO4	3	2										1
CO5	3	2										1

CO – PO Mapping

I-Year-I Semester ES1103L

PROBLEM SOLVING USING C LAB (Common to All Branches)

L	Τ	Р	С
0	0	3	1.5

Course Objectives:

- 1. Apply the principles of C language in problem solving.
- 2. To design flowcharts, algorithms and knowing how to debug programs.
- 3. To design & develop of C programs using arrays, strings pointers & functions.
- 4. To review the file operations, pre-processor commands.

Exercise 1

1. Write a C program to print a block F using hash (#), where the F has a height of six characters and width of five and four characters.

2. Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches and width of 5 inches.

3. Write a C program to display multiple variables.

Exercise 2

1. Write a C program to calculate the distance between the two points.

2. Write a C program that accepts 4 integers p, q, r, s from the user where r and s are positive and p is even. If q is greater than r and s is greater than p and if the sum of r and s is greater than the sum of p and q print "Correct values", otherwise print "Wrong values".

Exercise 3

1. Write a C program to convert a string to a long integer.

2. Write a program in C which is a Menu-Driven Program to compute the area of the various geometrical shape.

3. Write a C program to calculate the factorial of a given number.

Exercise 4

1 .Write a program in C to display the n terms of even natural number and their sum.

2. Write a program in C to display the n terms of harmonic series and their sum.

 $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \dots \frac{1}{n}$ terms.

3. Write a C program to check whether a given number is an Armstrong number or not.

Exercise 5

- 1. Write a program in C to print all unique elements in an array.
- 2. Write a program in C to separate odd and even integers in separate arrays.
- 3. Write a program in C to sort elements of array in ascending order.

Exercise 6

- 1. Write a program in C for multiplication of two square Matrices.
- 2. Write a program in C to find transpose of a given matrix.

Exercise 7

- 1. Write a program in C to search an element in a row wise and column wise sorted matrix.
- 2. Write a program in C to print individual characters of string in reverse order.

Exercise 8

- 1. Write a program in C to compare two strings without using string library functions.
- 2. Write a program in C to copy one string to another string.

Exercise 9

1. Write a C Program to Store Information Using Structures with Dynamically Memory Allocation

2. Write a program in C to demonstrate how to handle the pointers in the program.

Exercise 10

1. Write a program in C to demonstrate the use of & (address of) and *(value at address) operator.

2. Write a program in C to add two numbers using pointers.

Exercise 11

1. Write a program in C to add numbers using call by reference.

2. Write a program in C to find the largest element using Dynamic Memory Allocation.

Exercise 12

1. Write a program in C to swap elements using call by reference.

2. Write a program in C to count the number of vowels and consonants in a string using a pointer.

Exercise 13

1. Write a program in C to show how a function returning pointer.

2. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc() function.

Exercise 14

1. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc() function. Understand & write the difference.

2. Write a program in C to convert decimal number to binary number using the function.

Exercise 15

1. Write a program in C to check whether a number is a prime number or not using the function.

2. Write a program in C to get the largest element of an array using the function.

Exercise 16

- 1. Write a program in C to append multiple lines at the end of a text file.
- 2. Write a program in C to copy a file in another name.
- 3. Write a program in C to remove a file from the disk.

Course Outcomes: By the end of the Lab, the student able to

- 1. Comprehend the various concepts of a C language
- 2. **Develop** algorithms and flowcharts
- 3. **Design** and development of C problem solving skills.
- 4. Acquire modular programming skills.

CO – PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	3	2	1	-	-	-	3	3	1	2	1	2
CO2	2	3	3	2	-	-	-	-	1	1	2	2	2	2
CO3	3	3	3	2	-	-	-	-	2	1	2	2	2	3
CO4	2	2	2	2	-	-	-	-	2	1	2	2	2	2

I-Year-II Semester BS1201

MATHEMATICS-II

L	Τ	Р	С
3	0	0	3

11 HOURS

14 HOURS

14 HOURS

Course objectives:

The main objectives are

- 1. To elucidate the different numerical methods to solve nonlinear algebraic equations
- 2. To disseminate the use of different numerical techniques for carrying out numerical integration
- 3. To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real-world problems and their applications

UNIT-1: Iterative methods

Introduction-Bisection method-Method of false position-Iteration method-Newton-Raphson method (one variable)–Jacobi and Gauss-Seidel methods for solving system of equations.

UNIT-2: Interpolation

Introduction-Errors in polynomial interpolation-Finite differences-Forward differences-Backward differences-Central differences -Relations between operators-Newton's forward and backward formulae for interpolation-Gauss's forward and backward formulae for

Interpolation – Interpolation with unequal intervals-Lagrange's interpolation formula-Newton's divide difference formula.

UNIT-3: Numerical integration and solution of ordinary difference equations 12 HOURS Trapezoidal rule–Simpson's 1/3rd and 3/8th rule–Solution of ordinary differential equations by Taylor's series-Picard's method of successive approximations-Euler's method-Modified Euler's method–Runge-Kutta method (second and fourth order).

UNIT-4: Laplace Transforms:

Laplace transforms of standard functions - Shifting theorems - Transforms of derivatives and integrals - Unit step function - Dirac's delta function - Periodic function - Inverse Laplace transforms – Convolution theorem (without proof)

Applications: Evaluation of integrals using Laplace transforms - Solving ordinary differential equations (Initial value problems) using Laplace transforms.

UNIT 5: Fourier series and Fourier Transforms:

14 HOURS Fourier series: Introduction - Periodic functions - Fourier series of periodic function - Dirichlet's conditions – Even and odd functions – Change of interval – Half-range sine and cosine series. Fourier Transforms: Fourier integral theorem (without proof) - Fourier sine and cosine integrals – Sine and cosine transforms – Properties – Inverse transforms – Finite Fourier transforms.

CO1	Evaluate approximate in the roots of polynomial and transcendental equations by different
	algorithms (EVALUATE)
CO2	Solve system of linear algebraic equations using Gauss Jacobi, Gauss Seidel and apply Newton's
	forward and backward interpolation and Lagrange's formulae for equal and unequal intervals
	(SOLVE, APPLY, FIND)
CO3	Apply different algorithms for approximating the solutions of ordinary differential equations to its
	analytical computations and also by Laplace the transforms for solving differential equations
	(SOLVE, APPLY, FIND)
CO4	Find or compute the Fourier series of periodic signals (SOLVE, APPLY, FIND, ANALYSE)
CO5	Know and be able to apply integral expressions for the forwards and inverse Fourier transform to
	range of non-periodic waveforms (SOLVE, APPLY, FIND)

Text books:

1. **B.S. Grewal,** Higher Engineering Mathematics, 44th Edition, Khanna Publishers

Reference books:

- 1. B.V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.
- 2. **H.K.Das**, Advanced Engineering Mathematics, 22nd Edition, S. Chand & Company Ltd.
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.

Micro-Syllabus of MATHEMATICS-II

UNIT-1: Iterative methods:Introduction–Bisection method–Method of false position–Iteration method–Newton-Raphson method (one variable)–Jacobi and Gauss-Seidel methods for solving system of equations.

Unit	Module	Micro content
1a. & 2.a	Numerical solution of	Bisection method
	algebraic and	Method of false position
Solving given	transcendental	Iteration method
polynomial	polynomials	Newton-Raphson's method
1b. & 2b.		Jacobi's method
Solving linear system	Solving linear system	Gauss-seidel method

UNIT-2: Interpolation:Introduction–Errors in polynomial interpolation–Finite differences– Forward differences–Backward differences–Central differences –Relations between operators– Newton's forward and backward formulae for interpolation–Gauss's forward and backward formulae for

Interpolation – Interpolation with unequal intervals–Lagrange's interpolation formula–Newton's divide difference formula.

Unit	Module	Micro content		
3a. & 4a.	Finite difference tables	Forward, backward & central difference tables		
Equal-Spaced		Errors in polynomials		

difference tables 3b. & 4b. Unequal spaced data & relation between various operators	Finding functional values for given data Unequal spaced data & relation between various operators	Newton's forward and backward difference interpolation formula Gauss forward and backward difference interpolation formula Lagrange's interpolation formula Relation between various operators (Shift, forward, backward, central, average & differential operators)			
UNIT-3: Numerical integration and solution of ordinary difference equations: Trapezoidal rule–Simpson's 1/3 rd and 3/8 th rule–Solution of ordinary differential equations by Taylor's series–Picard's method of successive approximations–Euler's method–Modified Euler's method–Runge-Kutta method (second and fourth order).					
Unit	Module	Micro content			
		Trapezoidal rule			
F 0 ()	Numerical Integration	Simpson's 1/3 rd rule			
5a. & 6a.		Simpson's 3/8 th			
Numerical		Taylors series method			
integration		Picard's method			
		Euler's method			
5b. & 6b. Numerical solution of ordinary differential equations for single variable	Numerical solution of ordinary differential equations for single variable	Modified Euler's method			

UNIT – 4: Laplace Transforms:Laplace transforms of standard functions – Shifting theorems – Transforms of derivatives and integrals – Unit step function – Dirac's delta function –Periodic function - Inverse Laplace transforms – Convolution theorem (without proof) Applications: Evaluation of integrals using Laplace transforms - Solving ordinary differential equations (Initial value problems) using Laplace transforms.

Unit	Module	Micro content		
7a. & 8a.		Shifting theorems		
Laplace	Laplace transforms and	Derivatives and integrals		
Transforms	theorem	Multiplication and division		
7b. & 8b. Inverse		Periodic functions		
Laplace	Periodic functions	Dirac delta functions		
transforms and	&Inverse Laplace	Evaluation integrals using Laplace Transforms		
Applications	Transforms	Solving differential equations using Laplace		
		transforms		

UNIT 5: Fourier series and Fourier Transforms:

Fourier series: Introduction – Periodic functions – Fourier series of periodic function – Dirichlet's conditions – Even and odd functions – Change of interval – Half-range sine and cosine series. Fourier Transforms: Fourier integral theorem (without proof) - Fourier sine and cosine integrals – Sine and cosine transforms – Properties – Inverse transforms – Finite Fourier transforms.

Unit	Module	Micro content				
		Periodic functions				
		Dirichlet's conditions				
9a. & 10a. Fourier Series	Fourier Series	Even and odd function's				
		Change of interval				
		Half range sine and cosine series				
		Fourier Sine and Cosine integral				
9b. & 10b.		Properties of Fourier Transforms				
		Fourier and Inverse Fourier Transforms				
	Fourier Transforms	Fourier cosine and Inverse Fourier cosine				
Transforms		Transforms				
		Fourier sine and Inverse Fourier sine Transforms				
		Finite Fourier Transforms				
		Inverse Finite Fourier Transforms				

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1

CO3	3	2									1
CO4	3	2									1
CO5	3	2									1
(Strong – 3; Moderate – 2; Weak – 1)											

I-Year-II Semester BS1202

ENGINEERING CHEMISTRY

L	Τ	Ρ	С		
3	0	0	3		

Knowledge of basic concepts of chemistry for Engineering students will help them as

professional engineers later in design and material selection as well as utilizing the available resources.

Course objectives:

- 1. Significance and use of plastics in household appliances and composites (FRP) in aerospace and automotive industries.
- 2. Outline the basics for the construction of electrochemical cells, batteries and fuel cells.Understand the mechanism of corrosion and how it can be prevented.
- 3. Importance of advanced materials and their engineering applications.
- 4. Differentiate and discuss the materials used in major industries like steel industry, metallurgical industries, construction industries, electrical equipments and manufacturing industries. Lubrication is also summarized.
- 5. Essentiality of fuel technology.
- 6. Need of water purification and importance of various water purification methods.

UNIT-I: POLYMER TECHNOLOGY

Polymerisation: Introduction-Methods of polymerisation-(emulsion and suspension)-Physical and mechanical properties.

Plastics: Compounding-Fabrication (compression, injection, blown film, extrusion)-Preparation, properties and applications of PVC, ploycarbonates and Bakelite-Mention some examples of plastic materials used in electronic gadgets, recycling of e-plastic waste.

Elastomers: Natural rubber-Drawbacks-Vulcanization-Preparation-Properties and applications of synthetic rubbers (Buna S, thiokol and polyurethanes)

Composite Materials: Fiber reinforced plastics-CFRP and GFRP.

Conducting polymers: Polyacetylene, doped conducting polymers- p-type and n-type doping.

Bio degradable polymers: Biopolymers and biomedical polymers.

UNIT-II: ELECTROCHEMICAL CELLS AND CORROSION 13 HOURS Single electrode potential-Electrochemical series and uses of series-Standard hydrogen electrode, calomel electrode, concentration cell, construction of glass electrode, Batteries: Dry cell, Ni-Cd cells, Ni-Metal hydride cells, Li-ion battery, Zinc air cells, Fuel cells-H₂ –O₂, CH₃OH-O₂, phosphoric acid, molten carbonate.

Corrosion: Definition-theories of corrosion (chemical and electrochemical)-galvanic corrosion, differential aeration corrosion, stress corrosion, water-line corrosion- passivity of metals-galvanic series-factors influencing rate of corrosion-corrosion control: (proper designing, cathodic protection)-protective coatings: cathodic and anodic coatings, electroplating, electroless plating (nickel), paints (constituents and its functions).

UNIT-III: CHEMISTRY OF MATERIALS

14 HOURS

Nano materials: Introduction, sol-gel method, characterization by BET, SEM and TEM methods, applications of graphene- carbon nanotubes and fullerenes: Types, preparation of carbon nanomaterials by carbon-arc, laser ablation method, and applications.

13 HOURS
Refractories: Definition , classification, properties (refractoriness, refractoriness under load, porosity and thermal spalling), failure of refractories.

Lubricants: Definition, mechanism of lubricants and properties (definition and importance).

Cement: Constituents, manufacturing, parameters to characterize the Clinker formation: lime saturation factor (LSF), silica ratio (SR), and alumina ratio (AR). Chemistry of setting and hardening, deterioration of cement.

UNIT-IV: FUELS 13 HOURS

Introduction-calorific value - HCV and LCV – problems using Dulong's formula – proximate and ultimate analysis of coal sample – significance of these analysis – problems – petroleum (refining – cracking) – synthetic petrol (Fischer-Tropsch & Bergius) – petrol knocking, diesel knocking – octane and cetane rating – anti-knocking agents – introduction to alternative fuels (bio-diesel, ethanol, methanol, natural gas, LPG, CNG) – Flue gas analysis by Orsat apparatus – rocket fuels.

UNIT-V: WATER TECHNOLOGY

12 HOURS

Hardness of water – determination of hardness by complexometric method – boiler troubles (priming and foaming, scale formation, boiler corrosion, caustic embrittlement) – internal treatments – softening of hard water (zeolite process and ion exchange process) – treatment of industrial waste water – potable water and its specifications – steps involved in purification of water – chlorination, break point chlorination – reverse osmosis and electro dialysis.

Course Outcomes: At the end of the course, the students will be able to

CO1	explain the preparation, properties and applications of thermoplastics, thermosettings, elastomers
	and conducting polymers.
CO2	know the importance of various materials and their uses in the construction of batteries and fuel
	cells.
CO3	to acquire the knowledge of nanomaterials, refractories, lubricants and cement.
CO4	assess the quality of various fuels.

CO5 | understand the importance of water and its usage in various industries.

Text books:

- 1. Engineering Chemistry by Jain & Jain; Dhanpat Rai Publicating Co., Latest Edition
- 2. Engineering Chemistry by Shikha Agarwal; Cambridge University Press, 2019 Edition.
- 3. Engineering Chemistry by Prasanth Rath, B. Ramadevi, Ch. Venkata Ramana Reddy, Subendu Chakravarthy; Cengage Publications, 2019 Edition.

Reference books:

- 1. A text book of Engineering Chemistry by S.S. Dara, S. S. Umare; S. Chand & Co., Ltd., Latest Edition.
- 2. Engineering Chemistry by Shashi Chawla; Dhanpat Rai Publicating Co., Latest Edition.

Micro-Syllabus of ENGINEERING CHEMISTRY

14

UNIT-I: POLYMER TECHNOLOGY HRS

Polymerisation:Introduction-Methods of polymerisation-(emulsion and suspension)-Physical and mechanical properties.

Plastics: Compounding-Fabrication (compression, injection, blown film, extrusion)-Preparation, properties and applications of PVC, ploycarbonates and Bakelite-Mention some examples of plastic materials used in electronic gadgets, recycling of e-plastic waste.

Elastomers: Natural rubber-Drawbacks-Vulcanization-Preparation-Properties and applications of synthetic rubbers (Buna S, thiokol and polyurethanes)

Composite Materials: Fiber reinforced plastics-CFRP and GFRP.

Conducting polymers: Polyacetylene, doped conducting polymers- p-type and n-type doping.

Bio degradable polymers: Biopolymers and biomedical polymers.

Unit	Module	Micro content		
Ia. Polymerization	Introduction, Methods of Polymerization And Properties of Polymers	Introduction - Polymer, monomer, functionality and polymerization. Methods of polymerisation - Emulsion and suspension Physical and mechanical properties of polymers.		
Plastics	Compounding of plastics, fabrication of polymer articles, preparation, properties and applications of some polymers, e-plastic and disposal of e-plastic waste	Compounding of plastics Fabrication of polymer articles – compression, injection, blowing, extrusion Preparation, properties and applications of PVC, ploycarbonates and Bakelite Mention some examples of plastic materials used in electronic gadgets, recycling of e-plastic waste.		
Elastomers	Natural Rubber, vulcanization, synthetic rubbers	Natural rubber – Drawbacks – Vulcanization Preparation – Properties and applications of synthetic rubbers – Buna S, thiokol and polyurethane rubbers.		
Composite materials	Fiber reinforced plastics	Fiber Reinforced Plastics (FRP) – CFRP and GFRP.		

Conducting polymers	Polyacetylene polymer, p-type and n-type doping	Polyacetylene, doped conducting polymers- p-type and n-type doping.
Biodegradable polymers	Biopolymers and biomedical polymers	Biopolymers and biomedical polymers – polylactic acid polyglycolic acid polymers

UNIT-II: ELECTROCHEMICAL CELLS AND CORROSION 12 HRS

Single electrode potential - Electrochemical series and uses of series - Standard hydrogen electrode, calomel electrode, concentration cell, construction of glass electrode, Batteries: Dry cell, Ni-Cd cells, Ni-Metal hydride cells, Li-ion battery, Zinc air cells, Fuel cells-H₂–O₂, CH₃OH-O₂, phosphoric acid, molten carbonate.

Corrosion: Definition - theories of corrosion (chemical and electrochemical)-galvanic corrosion, differential aeration corrosion, stress corrosion, water-line corrosion- passivity of metals-galvanic series-factors influencing rate of corrosion-corrosion control: (proper designing, cathodic protection)-protective coatings: cathodic and anodic coatings, electroplating, electroless plating (nickel), paints (constituents and its functions).

Unit	Module	Micro content				
Introduction	Single electrode potential	Oxidation potential Reduction potential				
Concentration cells	Electrode concentration cell and electrolyte concentration cell	Electrode concentration cell and electrolyte concentration cell				
Electro chemical series	Electro chemical series	Definition – Electro chemical series Significances of Electro chemical series Differences between Electro chemical series and galvanic series				
Reference electrodes	Standard Hydrogen Electrode Calomel Electrode Glass Electrode	Working Principle and Construction of a – Standard Hydrogen Electrode – Calomel Electrode				

		– Glass Electrode			
	Introduction	Definition – Corrosion			
Corrosion	Theories of Corrosion	Chemical Theory of Corrosion / Dry Corrosion Electro Chemical Theory of Corrosion / Wet Corrosion			
	Types of Corrosion	Galvanic corrosion, Differential aeration corrosion, Stress corrosion, Water-line corrosion			
	Passivity of metals	Passivity, Examples for passive metals			
Factors affecting	(a) Nature of metal	 (a) Nature of metal: (i) Position of metal in the Galvanic series (ii) Purity of metal (iii) Relative surface area of anodic and cathodic metal (iv) Nature of oxide film (v) Physical state of metal (vi) Solubility and volatility of corrosion products 			
rate of Corrosion	(b) Nature of environment	 (b) Nature of environment: (i) Temperature (ii) Humidity (iii) pH of the medium (iv) Establishment of oxygen concentration cell (v) Impurities of the atmosphere (vi) Polarization of electrodes 			
Corrosion control methods	Cathodic protection	Sacrificial anodic protection, impressed cathodic current			
	Cathodic and Anodic coatings	Galvanizing and Tinning			
	Electroplating	Electroplating with example			
	Electroless plating	Nickel Electroless plating			
	Paints	Constituents of paints and its functions			

UNIT-III: CHEMISTRY OF MATERIALS

12 HRS

Nano materials: Introduction, sol-gel method, characterization by BET, SEM and TEM methods, applications of graphene- carbon nanotubes and fullerenes: Types, preparation of carbon nanomaterials by carbon-arc, laser ablation method, and applications.

Refractories: Definition , classification, properties (refractoriness, refractoriness under load, porosity and thermal spalling), failure of refractories.

Lubricants: Definition, mechanism of lubricants and properties (definition and importance).

Cement: Constituents, manufacturing, parameters to characterize the Clinker formation: lime saturation factor (LSF), silica ratio (SR), and alumina ratio (AR). Chemistry of setting and hardening, deterioration of cement.

Unit	Module	Micro content			
Nano materials	Introduction, Sol-gel method, BET, TEM and SEM Methods	Introduction, sol-gel method, characterization by BET, SEM and TEM methods, applications of graphene- carbon nanotubes and fullerenes: Types, preparation of carbon nanomaterials by carbon-arc, laser ablation method, and applications.			
Refractories	Definition, Classification of Refractories, Failure of Refractories	Definition , classification, properties (refractoriness, refractoriness under load, porosity and thermal spalling), failure of refractories.			
Lubricants	Definition, Mechanism of Lubrication	Definition, mechanism of lubricants and properties (definition and importance).			
Cement	Constituents of Portland cement, clinker formation, lime saturation factor, setting and hardening of cement, deterioration of cement	Constituents, manufacturing, parameters to characterize the Clinker formation: lime saturation factor (LSF), silica ratio (SR), and alumina ratio (AR). Chemistry of setting and hardening, deterioration of cement.			

UNIT-IV: FUELS

12 HRS

Introduction - calorific value - HCV and LCV – problems using Dulong's formula – proximate and ultimate analysis of coal sample – significance of these analysis – problems – petroleum (refining – cracking) – synthetic petrol (Fischer-Tropsch & Bergius) – petrol knocking, diesel knocking – octane and cetane rating – anti-knocking agents – introduction to alternative fuels (bio-diesel, ethanol, methanol, natural gas, LPG, CNG) – Flue gas analysis by Orsat apparatus – rocket fuels.

Unit	Module	Micro content
Introduction	Introduction to fuels	Calorific Value – Higher Calorific Value – Lower Calorific Value
Introduction		Problems using Dulong's formula
	Coal Analysis	Proximate analysis of coal and Significances

		Ultimate analysis of coal and Significances			
Crude oil or	Refining of Petroleum	Refining of Petroleum with schematic diagram,			
Petroleum		Cracking of Petroleum			
S-mth atia matual	Fischer-Tropsch and	Fischer-Tropsch & Bergius methods with			
Synthetic petrol	Bergius methods	schematic diagram			
Knocking of	Knocking of	Petrol knocking, diesel knocking – octane and			
petrol and diesel	petrol and diesel	cetane rating – anti-knocking agents			
	Introduction, biodiesel,	Introduction to alternative fuels (bio-diesel,			
Alternative fuels	ethanol, natural gas, LPG,	ethanol, methanol, natural gas, LPG, CNG),			
	CNG	rocket fuels.			
Flue Gas	Flue Gas Analysis	Flue gas analysis by Orsat apparatus			
UNIT-V: WATER	TECHNOLOGY				

12 HRS

Hardness of water – determination of hardness by complexometric method – boiler troubles (priming and foaming, scale formation, boiler corrosion, caustic embrittlement) – internal treatments – softening of hard water (zeolite process and ion exchange process) – treatment of industrial waste water – potable water and its specifications – steps involved in purification of water – chlorination, break point chlorination – reverse osmosis and electro dialysis.

T T •/	26.2.2			
Unit	Module	Micro content		
	Introduction.	Temporary hardness, Permanent hardness and		
Hardness of	Determination of	Total hardness		
water				
	Hardness	Determination of Hardness by complexometry		
Dollar tranhlag	Deiler troubles	Priming and foaming, scale formation, boiler		
Boller troubles	Boller troubles	corrosion, caustic embrittlement		
Intornal		Zeolite process and ion exchange process		
Internar	Softening of hard water			
treatments	_	Treatment of industrial waste water		
Datable water	Potable water and its	Detable water and its apositions		
Potable water	specifications	Potable water and its specifications		
	*			
Purification of	Purification of water,	Steps involved in purification of water –		

water	Reverse osmosis and	chlorination, break point chlorination – reverse
	Electro dialysis.	osmosis and electro dialysis.

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2					2					
CO2	2	2					2					
CO3	2	2					2					
CO4	2	2					2					
CO5	2	2					2					

(Strong – 3; Moderate – 2; Weak – 1)

I-Year-II Semester

BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING

L	Τ	Ρ	С	
3	0	0	3	

14 HOURS

13 HOURS

Course objectives:

ES1201

1. To introduce basics of electric circuits and to teach DC and AC electrical circuit analysis.

- 2. To explain the working principles DC machines and speed control of various DC motors.
- 3. To explain the working principles of transformers and AC machines and its applications.
- 4. To introduce the basics of semiconductor physics and operation and applications of Diodes.
- 5. To introduce the basics of transistors and explain the transistor configurations

Unit 1 DC & AC Circuits:

DC Circuits:

Electrical circuit elements (R - L and C) – Kirchhoff's laws -Voltage and Current division rulesseries, parallel circuits and star-delta and delta-star transformations- [Elementary treatment only] **AC Circuits:**

Representation of sinusoidal waveforms - Peak and RMS values - phasor representation - real power - reactive power - apparent power - power factor.[Elementary treatment only]

Unit 2 DC Machines:

DC Generator:

Construction-Principle and operation of DC Generator - EMF equation -Types– Applications [Elementary treatment only]

DC Motor:

Principle and operation of DC Motor – types-Torque equation - Speed control of DC Motor-Brake test- Swinburne's test-Applications. [Elementary treatment only]

Unit 3 AC Machines:	13 HOURS
Single Phase Transformer:	
Construction, Principle and operation of Single-Phase Transformer -EMF E	quation-Losses-
Efficiency. [Elementary treatment only]	
Three Phase Induction Motor: Construction- Principle and operation of three	phase Induction
Motor-Types- Applications. [Elementary treatment only]	
Unit 4 Semiconductor Devices:	13 HOURS
Semiconductor Physics, PN Junction Diode & Zener Diode-characteristics	- Applications:
Rectifiers (Half Wave Rectifier & Full Wave Rectifier) [Elementary treatment	only], Clippers
and Clampers.	
Unit 5 Bipolar Junction Transistors:	12 HOURS
	a

Construction and working of bipolar junction transistor, CB, CE and CC Configurations and characteristics. [Elementary treatment only], Transistors as amplifiers, op-amp basics.

Course Outcomes: At the end of the course, the student will be able to

CO1	Apply concepts of KVL/KCL in solving DC circuits. (Apply, Find, Solve)
CO2	Choose correct machine for a specific application. (Understand, Apply)
CO3	Illustrate working principles of DC and AC Machines. (Understand, Apply)
CO4	Describe working principles of diodes and transistors. (Understand, Apply)
CO5	Understand the applications of diodes and transistors. (Understand, Analyze)

Text books:

- 1. D. P. Kothari and I. J. Nagrath- "Basic Electrical Engineering" Tata McGraw Hill 2010.
- 2. Electronic Devices and Circuits, R. L. Boylestad and Louis Nashelsky, 9th edition, PEI/PHI 2006.

Reference books:

- 1. L. S. Bobrow- "Fundamentals of Electrical Engineering" Oxford University Press 2011.
- 2. E. Hughes "Electrical and Electronics Technology" Pearson 2010.

Micro-Syllabus of Basics of Electrical & Electronics Engineering

UNIT-I: DC & AC Circuits:

DC Circuits:

Electrical circuit elements (R - L and C) – Kirchhoff's laws -Voltage and Current division rulesseries, parallel circuits and star-delta and delta-star transformations- [Elementary treatment only]

AC Circuits:

Representation of sinusoidal waveforms - Peak and RMS values - phasor representation - real power - reactive power - apparent power - power factor. [Elementary treatment only]

Unit Module Micro content	
-----------------------------------	--

Definitions of Voltage Comment Demon			
Definitions of voltage, Current, Power a	Definitions of Voltage, Current, Power & Energy		
Definitions & circuit Types and Classification of circuit elen	nents: R, L, C		
elements elements Active, Passive; unilateral, bi	lateral; linear,		
nonlinear; lumped, distributed elements			
Ohm's Law. Active elements -Repr	esentation of		
Voltage and current sources in ideal	Voltage and current sources in ideal and Practical		
DC Circuits Ohm's law, cases and Passive elements –Voltag	e & Current		
KCL, KVL, Voltage & relationship of R - L and C elements			
Current Division rules Kirchhoff's Voltage and current laws	s –series and		
parallel circuits of R, L & C elements	, Voltage and		
Current division rules for resistive circu	it only		
STAR-DELTA star-delta and delta-star transformation	s of resistive		
transformation circuit only [Elementary treatment only]			
Representation of sinusoidal wavef	orms –Phase		
Bhaser representation difference and phasor representation	of sinusoidal		
& AC fundamentals waveforms			
1.b Peak, Average and RMS values for	or sinusoidal		
AC Circuits waveforms only			
Definitions of reactance and Impedance	, real power -		
AC circuits & Power reactive power - apparent power -	power factor.		
[Elementary treatment only]			

UNIT-II: DC Machines:

DC Generator:

Construction-Principle and operation of DC Generator - EMF equation -Types- Applications [Elementary treatment only]

DC Motor:

Principle and operation of DC Motor – types-Torque equation - Speed control of DC Motor-Brake test- Swinburne's test-Applications. [Elementary treatment only]

Unit	Module	Micro content					
		Construction details of dc generator-Field System, Armature					
		Principle and operation of DC generator					
2 9	DC generator principle	derivation of generated EMF-Simple problems					
DC generators	of operation &	on generated EMF					
	applications	Types of dc generators- Separately and Self					
		excited (Shunt and series generators equivalent					
		circuit [Elementary treatment only]) and					
		applications.					
2 h DC Matana	DC Motor principle of	Principle operation of DC Motor					
2.0 DC Motors	operation & Back EMF	Significance of Back EMF-Simple problems on					

		Back EMF
		Derivation of Torque Equation-Simple problems
		on Torque Equation Torque equation of DC
		motor
	Types of DC motors &	Types of DC Motors (Shunt and series motors
	Applications	equivalent circuit) and Applications
	DC motor Speed control	speed control (armature and field control
	techniques	methods)
	Testing of DC moshings	Brake test procedure-Swinburne's test procedure
resting of DC machines		[Elementary treatment only]

UNIT-III: AC Machines:

Single Phase Transformer:

Construction, Principle and operation of Single-Phase Transformer –EMF Equation-Losses-Efficiency. [Elementary treatment only]

Three Phase Induction Motor: Construction- Principle and operation of three phase Induction Motor-Types- Applications. [Elementary treatment only].

Unit	Module	Micro content		
3.a Single Phase	Basics of transformer	Construction, principle of operation of single-phase transformer, Types of single-phase transformer		
transformer		EMF Equation of a transformer and simple		
	EMF equation &	problems on EMF equation of single-phase		
	Phasor diagram	transformer		
		Ideal Transformer on NO load with phasor diagram		
	Transformer performance	Losses, Efficiency. [Elementary treatment only]		
	Basics of 3-phase	Construction and principles of 3-phase induction		
3.b. Three Phase	induction motor	motor		
Induction Motor	Types and	Types (Squirrel Cage and slip ring induction motor		
	applications	construction)- Applications		

UNIT – IV: Semiconductor Devices

Semiconductor Physics, PN Junction Diode & Zener Diode-characteristics- Applications: Rectifiers (Half Wave Rectifier & Full Wave Rectifier) [Elementary treatment only], Clippers and Clampers.

Unit	Module	Micro content			
		Classification of materials based on energy band			
4.a.	onductor Semiconductor	diagram			
Semiconductor		Current density in conductor, Intrinsic			
physics & Diodes	1 Hysics	semiconductor & properties of silicon and			
		germanium			

		Extrinsic semiconductor: P-type and N-type,				
		Conductivity of extrinsic semiconductor and law of				
		mass action, Diffusion & Drift currents-N junction				
		formation.				
		Working principle of PN junction diode: forward				
		bias, reverse bias				
	DN Junction Diodo &	Diode current equation (Expression only), Basic				
	Zener Diode	problems on usage of diode current equation.				
		Diode circuit models: Ideal Diode Model, Ideal				
		Diode Model with V_{γ} . Reverse breakdown				
		phenomena, Zener diode characteristics				
	Voltage regulator	Zener Diode as Voltage Regulator				
		PN junction Diode Rectifiers (Working principle,				
		Input and Output Waveforms and Expressions of				
	Diode Rectifier	output DC voltage for each) PN junction Diode				
4.b Diode	Circuits	Rectifiers (Working principle, Input and Output				
Applications		Waveforms and Expressions of output DC voltage				
		for each)				
		Bridge. Basics of Clippers: Series Positive, Series				
	Clipper circuits	negative, Shunt Positive, Shunt negative, Dual				
		clipping (without bias voltage).				
UNIT V: Bipolar Junction Transistors						
Construction and v	vorking of bipolar junct	ion transistor, CB, CE and CC Configurations and				
characteristics.[Elei	nentary treatment only],	Iransistors as amplifiers, op-amp basics.				
Unit	Module	Micro content				
	BJT construction	& Periodic functions Construction, Configuration				
	working	and models				
5.a BJT		Working of BJT, Definitions of α , β and γ				
		CB characteristics: Input, output characteristics,				
		current relation, dynamic input and output				
	DJI UB,UE	CE characteristical langet estimate the mathematic				
	characteristics	CE characteristics: input, output characteristics,				
		resistances				
		105151411005				
	RIT Amplifian	Transistor as an amplifiar				
	BJT Amplifier	Transistor as an amplifier Block diagram of OP AMP (Opplitation				
	BJT Amplifier Basics of OP-amp	Transistor as an amplifier Block diagram of OP-AMP (Qualitative treatment)				
5.b OP-Amp	BJT Amplifier Basics of OP-amp characteristics	Transistor as an amplifier & Block diagram of OP-AMP (Qualitative treatment) Ideal characteristics of OP-AMP				
5.b OP-Amp basic	BJT Amplifier Basics of OP-amp characteristics	Transistor as an amplifier & Block diagram of OP-AMP (Qualitative treatment) Ideal characteristics of OP-AMP Inverting amplifier circuit				
5.b OP-Amp basic	BJT AmplifierBasics of OP-ampcharacteristicsBasic OP-amp circuits	Transistor as an amplifier & Block diagram of OP-AMP (Qualitative treatment) Ideal characteristics of OP-AMP Inverting amplifier circuit Non-inverting amplifier circuit				

CO PO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1
CO3	3											1
CO4	3	2										1
CO5	3											1
AVG	3	2										1

(Strong – 3; Moderate – 2; Weak – 1)

I-Year-II Semester ES1202

BUILDING MATERIALS AND CONSTRUCTION

L	Τ	P	С
3	0	0	3

Course objectives:

The main objectives are

- 1. Identify various building materials and their structural requirements.
- 2. Review different types of masonry construction.
- 3. Explain the significance of cement and lime in construction.
- 4. Identify the suitable material for construction and various building components.
- 5. Discuss about various building services and finishing.

Unit-I: BUILDING MATERIALS-I 12 HOURS

Stones: Properties of building stones – relation to their structural requirements, classification of stones – stone quarrying – precautions in blasting, dressing of stone

Aggregates: Classification of aggregate – Coarse and fine aggregates

Bricks: Composition of good brick earth, various methods of manufacturing of bricks.

Unit-II: BUILDING MATERIALS-II13 HOURS

Tiles: Characteristics of good tile - manufacturing methods, types of tiles.

Steel: General; Manufacture of steel; Uses of steel; Market forms of steel.

Glass: Manufacture of glass

Wood: Structure – Properties- Seasoning of timber- Classification of various types of woods used in buildings- Defects in timber

Unit-III: BUILDING MATERIALS-III14 HOURS

Lime: Various ingredients of lime – Constituents of lime stone – classification of lime – various methods of manufacture of lime.

Cement: Portland cement- Chemical Composition – Hydration, setting and fineness of cement. Various types of cement and their properties. Various field and laboratory tests for Cement.

Various ingredients of cement concrete and their importance

Unit-IV: BUILDING COMPONENTS AND MASONRY 13 HOURS

Building Components: Lintels, arches, stair cases – types. Different types of floors – Concrete, Mosaic, Terrazzo floors, Pitched, Types of roofs – King and Queen post Trusses. R.C.C Roofs, Pre-fabricated roofs.

Masonry: Types of masonry, English and Flemish bonds, Rubble and Ashlar Masonry. Cavity and partition walls

Unit-V: BUILDING SERVICES AND FINISHES 13 HOURS

Building Services: Plumbing services, water distribution, sanitary lines and fittings, ventilators, functional requirements.

Finishing: Damp Proofing and water proofing materials and uses – Plastering Pointing, white washing and distempering. Paints: Constituents of a paint – Types of paints – Painting of new/old wood- Varnish.

Formwork, Scaffolding

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Identify suitability of stones, bricks, tiles, glass and steel as building materials.
	{Understand level, KL2}
CO2	Make out the appropriate masonry to be used for building construction and importance of
	wood {Apply level, KL3}
CO3	Recognize the importance of lime and cement as building materials. {Understand level,
	KL2}
CO4	Pick up the appropriate building components for comfortable construction. {Apply level,
	KL3}
CO5	Identify the appropriate type of finishing techniques and building services which are
	generally used in buildings. {Understand level, KL2}

Text books:

- 1. Engineering Materials by S.C.Rangwala
- 2. Building Materials, B. C. Punmia, Laxmi Publications private ltd.
- 3. Building Construction, B.C. Punmia, Laxmi Publications (p) ltd.

Reference books:

- 1. S.K. Duggal "Building Materials"- New age International Publisher,
- 2. R.K. Rajput "Engineering Materials (Including construction materials)"-, S.Chand Publications.
- 3. P.C Varghese "Building Construction" Prentice-Hall of India Private Ltd.

Micro-Syllabus of Building Materials and Construction

Unit-I: BUILDING MATERIALS-I

Stones: Properties of building stones – relation to their structural requirements, classification of stones – stone quarrying – precautions in blasting, dressing of stone

Aggregates: Classification of aggregate – Coarse and fine aggregates

Bricks: Composition of good brick earth, various methods of manufacturing of bricks.

Unit	Module	Micro content
		Properties of building stones
		Classification of Stone- Physical, Chemical and
	Stones	Geological
	Stolles	Stone Quarrying
		Precaution in Blasting
		Dressing of Stone
	Aggregates	Aggregates definition
		Classifications of Aggregates based on size,
Ia/Ib.Building		Geological origin, Shape
Materials-I	Bricks	Composition of Goof Brick Earth
		Harmful Ingredients in Brick Earth
		Comparison between brickwork and stonework
		Manufacturing of Bricks
		Tempering of Clay- Pug Mill
		Burning- Clamps
		Burning- Intermittent and Continuous Kilns
		Qualities of good Brick

Unit-II: BUILDING MATERIALS-II

Tiles: Characteristics of good tile - manufacturing methods, types of tiles.

Steel: General; Manufacture of steel; Uses of steel; Market forms of steel.

Glass: Manufacture of glass

Wood: Structure – Properties- Seasoning of timber- Classification of various types of woods used in buildings- Defects in timber.

Unit	Module	Micro content
		Types of Tiles- Common Tiles, Encaustic tiles
		Manufacturing of Common and Encaustic Tiles
	Tiles	Characteristic of Good Tile
		Types of Common Tiles- Drain Tiles, Roof Tiles,
		Floor or paving Tiles
IIa/ IIb. Building	Steel	Steel- Introduction
Materials-II		Manufacturing of Steel
		Bessemer's Process
		Cementation Process
		Crucible steel process
		Duplex Process
		Eletyric Process

		L.D. Process
		Open-Hearth process
		Uses of Steel
		Market forms of Steel
		Introduction to Glass
		Classification of Glass based on chemical
	Glass	composition
		Types of Glass properties and their uses
		Manufacturing of Glass
	Wood	Classification of Trees
		Structure of Tree- Macro and Micro Structure
		Processing of Timber
		Seasoning of Timber
		Different of methods of Seasoning
		Conversion of Timber
		Preservation of Timber
		Defects in Timber
		Industrial Timber- Vbeneers, Plywood,
		Fiberboard, Impreg timber, compreg Timber,
		Hard Board, GUlam, Chip Board, Block Board,
		Flush Door Shutters
		List of Indian Timber Trees used for Engineering
		purposes

Unit-III: BUILDING MATERIALS-III

Lime: Various ingredients of lime – Constituents of lime stone – classification of lime – various methods of manufacture of lime.

Cement: Portland cement- Chemical Composition – Hydration, setting and fineness of cement. Various types of cement and their properties. Various field and laboratory tests for Cement. Various ingredients of cement concrete and their importance

Unit	Module	Micro content		
		Classification of Binding Materials		
		Sources of Lime		
		Constituent of Limestone		
		Classification of Lime- Fat Lime, Hydraulic		
		Lime, Poor Lime		
		I.S Classification of Lime		
	Lime	Comparison between fat lime and Hydraulic		
IIIa/IIIb.Building		Lime		
Materials-III		Manufacturing of Fat Lime		
		Manufacturing of Natural Hydraulic Lime		
		Manufacturing of Artificial Hydraulic Lime		
		Uses of Lime		
		Precaution while handling Lime		
		Characteristics of Cement		
	Cement	Properties of Cement		
		Composition of Ordinary Cement		

Function of Cement Ingredients
Harmful Constituents of cement
Setting action of Cement
Field Test for cement
Laboratory Test for Cement
Uses of Cement
Varieties of Cement

Unit-IV: BUILDING COMPONENTS AND MASONRY

Building Components: Lintels, arches, stair cases – types. Different types of floors – Concrete, Mosaic, Terrazzo floors, Pitched, Types of roofs – King and Queen post Trusses. R.C.C Roofs, Pre-fabricated roofs.

Masonry: Types of masonry, English and Flemish bonds, Rubble and Ashlar Masonry. Cavity and partition walls.

Unit	Module	Micro content		
		Lintels		
		Definition		
		Classification of Arches		
		Classification of Arches		
		Arches		
		Definition		
		Components of Arches		
		Classification of Arches		
		Stair Case		
		Definition, terminology		
	Building Components	Classification of Stairs		
		Floor		
		Different Types of Floors		
IV9/IVh Building		Cement Concrete Flooring		
Components and		Mosaic Flooring		
Masonry		Terrazzo Flooring		
widsoni y		Roof		
		Types of Roofs		
		King-Post Truss		
		Queen Post Truss		
		Madras- Terrace roofing		
		Pre-fabricated roof		
		Advantage of Masonry		
		Terminology		
		Types of bonds		
		Classification of Stone Masonry		
	Masonry	Rubble Masonry		
		Ashlar Masonry		
		Cavity Walls		
		Partition Walls		
		Types of Partition walls		

Unit-V: BUILDING SERVICES AND FINISHES

Building Services: Plumbing services, water distribution, sanitary lines and fittings, ventilators, functional requirements.

Finishing: Damp Proofing and water proofing materials and uses – Plastering Pointing, white washing and distempering. Paints: Constituents of paint – Types of paints – Painting of new/old wood- Varnish.

Unit	Module	Micro content
		Plumbing Services
		Water distribution
	Building Services	Sanitary Line
		Sanitary Fittings
		Ventilator and its requirements
		Damp Proofing
		Types of Damp proofing
		Materials used for Damp Proofing
		Water Proofing
	Finishing	Types of Water proofing
		Materials used for Water Proofing
Vo/Vb Building		Plastering
Va/VD. Dunuing		Types of Plastering
Finishing		Pointing
1 mismig		Paint
		Constituents of paint
		Types of paint
		Painting of various Surfaces
		Varnish
		Types of varnishes
		White washing and Colour Washing
		Scaffolding
	Scaffolding and	Components
	formwork	Types of Scaffolding
		Form Work
		Classification of formwork

Formwork, Scaffolding

CO – PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		2		1		2	1				
CO2	1		2			2	2					
CO3	1		2		3							
CO4	1				3							

CO5	1		3				

I-Year-II Semester ES1203

ENGINEERING MECHANICS

L	Τ	Р	С
3	0	0	3

Course objectives:

The main objectives are

- 1. To understand the resolution of forces, equilibrium of force systems
- 2. To learn the analysis of forces in the structures and also the basic concepts of friction and its Applications to simple systems.
- 3. To understand the concepts of centroid, moment of inertia, centre of gravity and mass moment of inertia.
- 4. To understand the basic concepts of kinematics and kinetics.
- 5. To learn the concepts of work energy method and impulse momentum

UNIT- I: INTRODUCTION TO ENGINEERING MECHANICS 13 HOURS

Force systems: Basic Concepts, Resultant of coplanar concurrent forces, Components of force in space, Moment of force and its applications, couples and resultant of force systems, Equilibrium of Force Systems, Free body diagram, Equations of equilibrium, Equilibrium of planar and spatial system.

UNIT-II: ANALYSIS OF STRUCTURES AND FRICTION 11 HOURS

Trusses: Introduction, Analysis of trusses by method of joints, method of sections;

Friction: Introduction to Friction, Laws of friction, Application to simple systems and connected systems.

UNIT-III: CENTROID AND CENTRE OF GRAVITY, AREA MOMENT OF INERTIA AND MASS MOMENT INERTIA 14 HOURS

Centroid: Centroid of simple figures from basic principles, centroid of composite sections;

Centre of Gravity: Center of gravity of simple body from basic principles, Center of gravity of composite bodies, Pappus theorems.

Area moments of Inertia: Definition – Polar Moment of Inertia, Transfer Theorem, Moments of Inertia of Composite Figures.

Mass Moment of Inertia: Introduction of Mass Moment of Inertia, mass moment of inertia of composite bodies

UNIT IV: INTRODUCTION TO KINEMATICS AND KINETICS 14 HOURS

Kinematics: Rectilinear and Curvilinear motions – Velocity and Acceleration – Motion of Rigid Body – Types and their Analysis in Planar Motion.

Kinetics: Analysis as a Particle and Analysis as a Rigid Body in Translation – Central Force Motion – Equations of Plane Motion – Fixed Axis Rotation – Rolling Bodies.

UNIT – V: WORK -ENERGY METHOD 13 HOURS

Work – Energy Method: Equations for Translation, Work-Energy Applications to Particle Motion, Connected System-Fixed Axis Rotation and Plane Motion. Impulse momentum method

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Compute the resultant and moment of a force system and apply the equations of
	equilibrium for a generalized force system (Apply)
CO2	Solve the forces in trusses, frames and also friction in various mechanical devices.
	(Apply)
CO3	Interpret the centroids, centers of gravity and moments of inertia of simple geometric
	shapes and understand the physical applications of these properties. (Apply)
CO4	Apply the basic concepts of dynamics to solve problems of engineering applications
	(Apply)
CO5	Solve problems using work energy equations for translation, fixed axis rotation and plane
	motion. (Apply)

Text books:

1. Reddy Vijay Kumar K. and K. Suresh Kumar (2010), Singer's Engineering Mechanics.

2.S.P. Timoshenko and D.H. Young, Engineering Mechanics, McGraw-Hill International Edition, 1983.

3. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications

Reference books:

1. Engineering Mechanics statics and dynamics - R.C. Hibbeler, 11th Edn - Pearson Publ.

2. Mechanics for Engineers, statics - F.P. Beer & E.R. Johnston – 5th Edn Mc Graw Hill Publ.

3. Engineering Mechanics statics and dynamics, A Nelson, Mc Graw Hill publications

Micro-Syllabus of ENGINEERING MECHANICS

UNIT- I: INTRODUCTION TO ENGINEERING MECHANICS

Force systems: Basic Concepts, Resultant of coplanar concurrent forces, Components of force in space, Moment of force and its applications, couples and resultant of force systems, Equilibrium of Force Systems, Free body diagram, Equations of equilibrium, Equilibrium of planar and spatial system.

Unit	Module	Micro content
		Basic Concepts
	INTRODUCTION	Resolving forces into rectangular components
		Classification of force system
1a. Force systems	Resultant of forces	Resultant of coplanar concurrent forces.
		Parallelogram law of method
		(Simple problems on analytical method only)
		Components of force in space
		(Simple problems using vector method for
		finding resultant)
		Moment of force & couples
		Varignon's theorem

		(Simple problems on analytical method only)			
		resultant of force systems			
		Defining constraint, Types of supports and reaction forces			
	Equilibrium of Force Systems	Free body diagram			
		Equilibrium of Force Systems			
1b. Equilibrium		Equations of equilibrium			
		Equilibrium of planar system			
		(Simple problems using analytical method only)			
		Equilibrium of spatial system (Simple problems on vector method)			

UNIT-II: ANALYSIS OF STRUCTURES AND FRICTION

Trusses: Introduction, Analysis of trusses by method of joints, method of sections;

Friction: Introduction to Friction, Laws of friction, Application to simple systems and connected systems.

Unit	Module	Micro content
2.a. ANALYSIS OF STRUCTURES		Introduction, Analysis of trusses
		Analysis of trusses by method of joints
	Trusses	(Simple problems on 2D Truss only)
		Analysis of trusses by method of sections
		(Simple problems on 2D Truss only)
		Introduction, Applications of Friction
2 h Evistian	T • •	Laws of friction
2.0. Friction	Friction	Cone of friction
		Simple 2D problems on Friction

UNIT-III:

CENTROID AND CENTRE OF GRAVITY, AREA MOMENT OF INERTIA AND MASS MOMENT INERTIA

Centroid: Centroid of simple figures from basic principles, centroid of composite sections;

Centre of Gravity: Center of gravity of simple body from basic principles, Center of gravity of composite bodies, Pappus theorems.

Area moments of Inertia: Definition – Polar Moment of Inertia, Transfer Theorem, Moments of Inertia of Composite Figures.

Mass Moment of Inertia: Introduction of Mass Moment of Inertia, mass moment of inertia of composite bodies

Unit	Module	Micro content				
		Derivation of Centroid for simple figures such as Triangle, sector and semi circle from basic principles				
3. CENTRE OF GRAVITY &	Centroid	Centroid of composite sections				
		Simple problems on <i>Centroid</i> of composite sections				
	Centre of Gravity	Derivation of Center of gravity for simple body such as cylinder and cone from the basic principles				
MOMENT OF INERTIA		Pappus theorems				
		Definition, Parallel axis theorem and Perpendicular axis theorem				
	Area moments of Inertia	Simple problems on				
		Area moments of Inertia				
	Mass Moment of Inertia	Mass Moment of Inertia importance and its Derivation for simple bodies such as cylinder and cone				

UNIT IV: INTRODUCTION TO KINEMATICS AND KINETICS

Kinematics: Rectilinear and Curvilinear motions – Velocity and Acceleration – Motion of Rigid Body – Types and their Analysis in Planar Motion.

Kinetics: Analysis as a Particle and Analysis as a Rigid Body in Translation – Central Force Motion – Equations of Plane Motion – Fixed Axis Rotation – Rolling Bodies.

Unit	Module	Micro content
		Equations of motion in linear motion Simple problems on linear motion
4a. Kinematics	Rectifinear motion	Projectile motion Simple problems on Rectilinear motion
		Equations of motion in Curvilinear motion
	Curvilinear motion	Relation between Linear and curvilinear moton (Simple problems)
	Motion of Rigid Body	Types and their Analysis in Planar Motion. (Finding Instantaneous center)
		D Alembert's principle
4b. <i>Kinetics</i>	Analysis as a Particle	Simple problems on Translatory motion using D Alembert's principle
	Analysis as a Rigid Body	Central Force Motion

Simple problems on Rolling Bodies
Rolling Bodies
Equations of Plane Motion – Fixed Axis Rotation

UNIT - V: WORK -ENERGY METHOD

Work – Energy Method: Equations for Translation, Work-Energy Applications to Particle Motion, Connected System-Fixed Axis Rotation and Plane Motion. Impulse momentum method.

Unit	Module	Micro content		
		Derivation of work energy method		
	Work-Energy Applications to Particle	Simple problems on Translation using work energy method		
5. WORK - ENERGY METHOD	Motion	Simple problems on Connected System using work energy method		
	Impulse momentum	Simple problems using Impulse momentum method		
	method	Simple problems on Connected System using Impulse momentum method		

CO-PO mapping

Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	3	2	2	1	1	-	-	-	-	-	1	1	2	2
C02	3	2	2	1	1	-	-	-	-	-	1	1	2	2
C03	3	2	2	1	1	-	-	-	-	-	1	1	2	2
C04	3	2	2	1	1	-	-	-	-	-	1	1	2	2
C05	3	2	2	1	1	-	-	-	-	-	1	1	2	2

I-Year-II Semester ES1201L

CIVIL WORKSHOP PRACTICE LAB

L	Т	Ρ	С
1	0	3	1.5

Course objectives: The course content aims to

- 1. Familiarize various tools and techniques used in carpentry
- 2. Train on different welding techniques
- 3. Understand building house wiring
- 4. Understand brick masonry methods
- 5. Familiarize various components used for Plumbing

Section	Contents	Mapped CO
Ι	Carpentry	C01
	 Half-lap joint: Join two wooden blocks with the help of half-lap joint. Dovetail joint: Join two wooden blocks with the help of dovetail joint. Sawing and finishing: Prepare a plain smooth block (cuboid) of timber of given dimension using sawing and planning operations. 	
II	Welding	CO2
	 Fillet welding: Join two given plates at right angle using fillet weld. But welding: Join two given plates using but weld. Spot welding: Lap joint of two thin sheets using resistance spot welding. 	
III	House wiring	CO3
	 Parallel and series connection of two bulbs Tube light and fan with regulator wiring Bulb operating with Two way switch Control and regulation of electrical devices using sensors 	
IV	Masonry	CO4
	 Assemble a L shape brick wall of 0.9 m length and 0.6 m height on each side with 9" and 4.5" thicknesses by arranging bricks in English bond (using only wet mud as mortar). Ensure that wall is in line, plumb and at right angle to a given structure Assemble a T shape brick wall of 1.2 m length and 0.6 m height on each side with 9" and 4.5" thicknesses by arranging bricks in Flemish 	

	bo plu	ond (using only wet mud as mortar). Ensure that wall is in line,	
	2 M		
	3. M	ark level of given height from ground level at different locations in	
	the	e workshop using water pipe technique	
V	Plumbing	CO5	
	1. Id	dentify various supply pipes and pipe fittings (like pipes of different	
	di pl	iameter, nipple, reducer, union, T, elbow, tap etc) used in lumbing.	
	2. Id tr	lentify various drain pipes and sanitary fittings(like p-trap, gully ap, etc) used in plumbing.	
	3. A di el cu w 4. V	Assemble a pipe line as per given drawing using pipes of one inch iameter, pipes of half inch diameter, nipple, reducer, union, T, lbow, tap etc. (This may involve basic tasks such as marking, utting, threading, etc and use of appropriate techniques so that vater leakage does not occur) and then dissemble this pipe line. Various chemicals used for water sealing.	
		C	

*Any 2 experiments from each section should be completed.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand variouscarpentry tools and techniques {Understand}
CO2	Develop different welding joints {Apply level}
CO3	
	Understand wiring methods for various electrical fittings. {Understand}
CO4	Differentiate construction of brick masonry in English and Flemish bond methods
	{Analyze}
CO5	Recognize various components and their functions of elements used for Plumbing
	{Remember}

CO-PO mapping

Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1											1		
CO2	3	2											1		
CO3	3	1											1		
CO4	3	3											2		
CO5	3	1											1		

(Strong – 3; Moderate – 2; Weak – 1)

I-Year-II Semester BS1202L

ENGINEERING CHEMISTRY LAB

L	Τ	Ρ	С
0	0	3	1.5

Introduction to chemistry laboratory – Molarity, Normality, Primary, Secondary standard solutions, Volumetric titrations quantitative analysis .

Course objectives:

- 1. To furnish the students with a solid foundation in Chemistry Laboratory required to solve the Engineering problems.
- 2. To expose the students in practical aspects of the theoritical concepts like pH, hardness of water etc.
- 3. To guide the students on how to handle the instruments like UV-visible spectrophotometer, potentiometer and conductometer.

List of Experiments: (Any 10 of the following listed 16 experiments)

- 1. Determination of HCl using standard Na₂CO₃ solution.
- 2. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.
- 3. Determination of Mn (II) using standard oxalic acid solution.
- 4. Determination of ferrous iron using standard K₂Cr₂O₇ solution.
- 5. Determination of Copper (II) using standard EDTA solution.
- 6. Determination of temporary and permanent hardness of water using standard EDTA solution.
- 7. Determination of Iron (III) by colorimetric method.
- 8. Determination of the concentration of acetic acid using sodium hydroxide (pH-metric method).
- 9. Determination of concentration of strong acid vs strong base (by conductometric method).
- 10. Determination of strong acid vs strong base (by potentiometric method).
- 11. Determination of Mg^{+2} present in an antacid.
- 12. Determination of CaCO₃ presence in an egg shell.
- 13. Estimation of vitamin- C.
- 14. Determination of phosphoric content in soft drinks.
- 15. Adsorption of acetic acid by charcoal.
- 16. Prepatation of nylon-6, 6 and Bakelite (demonstration only)

Reference Books:

A Text Book of Quantitative Analysis, Arthur J. Vogel.

Course Outcomes: At the end of the course, the student will be able

CO1	To estimate the amount of metal ions present in different solutions (L4 & L3)				
CO2	To analyze the quality parameters of water (L4)				
CO3	To determine the strength of different solutions by using different instrumentation				

techniques (L3)

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3							2			
CO2	2	2							2			
CO3	2	3							2			

(Strong – 3; Moderate – 2; Weak – 1)

I-Year-II SemesterBASICS OF ELECTRICAL & ELECTRONICSES1203LENGINEERING LAB

L	Т	Р	С
0	0	3	1.5

Course objectives:

- 1. To Verify Kirchhoff's laws, Voltage and Current division rules.
- 2. To learn speed control and testing of DC Shunt Motor.
- 3. To learn and understand the operation of induction motor.
- 4. To learn applications of diodes and transistors.

List of Experiments: -

- 1. Verification of Kirchhoff laws.
- 2. Verification of Voltage division rule and current division rule.
- 3. Speed control of DC Shunt Motor.
- 4. Perform Brake test on DC Shunt Motor.
- 5. Conduct Swinburne's test on DC Shunt Motor.
- 6. Brake test on 3-phase Induction Motor.
- 7. Draw the V-I characteristics of P-N Junction Diode.
- 8. Draw the V-I characteristics of zener Diode.
- 9. Half wave rectifier and Full wave rectifier operations using diodes.
- 10. Draw the BJT-CB Configuration characteristics.
- 11. Draw the BJT-CE Configuration characteristics.

- 12. Draw the BJT-CC Configuration characteristics.
- 13. Study of circuit simulation software (any one- TINA-PRO/ PSPICE/ CIRCUIT MAKER/ GPSIM/ SAPWIN etc).

Text Books

- 1. D. P. Kothari and I. J. Nagrath- "Basic Electrical Engineering" Tata McGraw Hill 2010.
- 2. Electronic Devices and Circuits, R. L. Boylestad and Louis Nashelsky, 9th edition, PEI/PHI 2006.

References

- 1. L. S. Bobrow- "Fundamentals of Electrical Engineering" Oxford University Press 2011.
- 2. E. Hughes "Electrical and Electronics Technology" Pearson 2010.

Course Outcomes

CO1.	Verify Kirchhoff's Laws and voltage and current division rules for DC supply.
CO2.	Analyze the performance of AC and DC Machines by testing.
CO3.	Perform speed control of DC shunt motor.
CO4.	Perform the half wave and full wave rectifier.

CO PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1
CO3	3											1
CO4	3	2										1

⁽Strong – 3; Moderate – 2; Weak – 1)

I-Year-II Semester MC1201

CONSTITUTION OF INDIA

L	Т	Р	С
2	0	0	0

Course objectives:

- 1. To Enable the student to understand the importance of constitution
- 2. To understand the structure of executive, legislature and judiciary
- 3. To understand philosophy of fundamental rights and duties
- 4. To understand the autonomous nature of constitutional bodies like Supreme Court and high court controller and auditor general of India and election commission of India.
- 5. To understand the central and state relation financial and administrative.

UNIT-I

Introduction to Indian Constitution: Constitution' meaning of the term, Indian Constitution -Sources and constitutional history, Features - Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy.

UNIT-II

Union Government and its Administration Structure of the Indian Union: Federalism, Centre-State relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, Lok Sabha, Rajya Sabha, The Supreme Court and High Court: Powers and Functions;

UNIT-III

State Government and its Administration Governor - Role and Position - CM and Council of ministers, State Secretariat: Organisation, Structure and Functions

UNIT-IV

Local Administration - District's Administration Head - Role and Importance, Municipalities -Mayor and role of Elected Representative - CEO of Municipal Corporation Panchayati: Functions PRI: Zila Panchayat, Elected officials and their roles, CEO Zila Panchayat: Block level Organizational Hierarchy - (Different departments), Village level - Role of Elected and Appointed officials - Importance of grass root democracy

UNIT-V

Election Commission: Election Commission- Role of Chief Election Commissioner and Election Commissionerate State Election Commission: Functions of Commissions for the welfare of SC/ST/OBC and women

Reference books:

- 1. Durga Das Basu, Introduction to the Constitution of India, Prentice Hall of India Pvt. Ltd.. New Delhi
- 2. Subash Kashyap, Indian Constitution, National Book Trust
- 3. J.A. Siwach, Dynamics of Indian Government & Politics
- 4. D.C. Gupta, Indian Government and Politics
- 5. H.M.Sreevai, Constitutional Law of India, 4th edition in 3 volumes (Universal Law Publication)
- 6. J.C. Johari, Indian Government and Politics Hans
- 7. J. Raj Indian Government and Politics
- 8. M.V. Pylee, Indian Constitution Durga Das Basu, Human Rights in Constitutional Law, Prentice Hall of India Pvt. Ltd.. New Delhi
- 9. Noorani, A.G., (South Asia Human Rights Documentation Centre), Challenges to Civil

Right), Challenges to Civil Rights Guarantees in India, Oxford University Press 2012

E-RESOURCES:

- 1. nptel.ac.in/courses/109104074/8
- 2. nptel.ac.in/courses/109104045/
- 3. nptel.ac.in/courses/101104065/
- 4. www.hss.iitb.ac.in/en/lecture-details
- 5. www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Know the sources, features and principles of Indian Constitution.
CO2	Learn about Union Government, State government and its administration.
CO3	Get acquainted with Local administration and Pachayati Raj.
CO4	Be aware of basic concepts and developments of Human Rights.
CO5	Gain knowledge on roles and functioning of Election Commission

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	3			3		2	3	-	3	2
CO2	2	-	2			2		2	2	-	3	2
CO3	3	-	3			2		2	2	-	3	3
CO4	2	-	3			2		2	2	-	3	3
CO5	3	-	1			3		3	3	-	3	2

(Strong - 3; Moderate - 2; Weak - 1)

II-Year-I Semester BS2101

Mathematics – III

L	Т	Р	С
3	0	0	3

Course objectives:

The main objectives are

- 1. Instruct the concept of Matrices in solving linear algebraic equations.
- 2. Familiarize the techniques in partial differential equations
- 3. Furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real-world applications

Unit-1: Solving system of linear equations, Eigen values and Eigen Vectors13 HOURS

Rank of a matrix by Echelon form and normal form–solving system of homogeneous and nonhomogeneous linear equations–Gauss elimination, Gauss Jordan for solving system of equations-Eigen values and Eigen vectors and their properties

Unit-2:Cayley-Hamilton theorem and quadratic forms13 HOURS

Cayley-Hamilton theorem (without proof)–Finding inverse and power of a matrix by Cayley-Hamilton theorem–Reduction to Diagonal form–Quadratic forms and nature of the quadratic forms–Reduction of quadratic form to canonical forms by orthogonal transformation.

Application: Free vibration of two mass systems.

Unit–3:Vector Differentiation13 HOURS

Scalar and Vector point functions-Vector Differential operator- Gradient – Directional derivatives – Divergence – Curl – Laplacian second order operator- Vector identities- Scalar Potential.

Unit-4:Vector Integration12 HOURS

Line integral – Work done – Circulation- Surface integral- Volume integral

Vector integral theorems (without proof): Green's theorem in a plane- Stokes theorem- Gauss Divergence theorem.

Unit-5:Solutions of Partial differential Equations14 HOURS

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

Second order PDE: Solutions of linear partial differential equations with constant coefficients – RHS term of the type e^{ax+by} , $\sin(ax+by)$, $\cos(ax+by)$, $x^m y^n$.

COI	develop the use of matrix algebra techniques that is needed by engineers for practical
	applications
CO2	solve system of linear algebraic equations using Gauss elimination, Gauss Jordan
CO3	to interpret the physical meaning of different operators such as gradient, curl and
	divergence
CO4	estimate the work done against a field, circulation and flux using vector calculus
CO5	identify the solution methods for partial differential equation that model physical
	processes

Course Outcomes: Upon successful completion of the course, the student will be able to

gineering Mathematics, 44 th Edition, Khanna Publishers.
Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill
igineering Mathematics, 22 nd Edition, S. Chand & Company Ltd.
ced Engineering Mathematics, 10 th Edition, Wiley-India.
ntre.net/maths-books-download/Linear-Algebra-A-free-Linear-
Online-Resource.html
ced Engineering Mathematics, 10 th Edition, Wiley-India. entre.net/maths-books-download/Linear-Algebra-A-free-Linear- Online-Resource.html

Micro-Syllabus of MATHEMATICS – III

UNIT-I: Solving system of linear equations, Eigen values and Eigen Vectors Rank of a matrix by Echelon form and normal form–solving system of homogeneous and non-homogeneous linear equations–Gauss elimination, Gauss Jordan for solving system of equations-Eigen values and Eigen vectors and their properties

Unit	Module	Micro content			
		Find rank of the given matrix by reducing into Echelon			
	Rank of the given	form.			
	matrix	Find rank of the given matrix by reducing into Normal			
1a.		form.(Canonical form)			
Solving system		Solve the system of homogeneous linear equations.			
of linear		Solve the system of Non- homogeneous linear equations.			
equations	System of linear	Solve the given system of linear equations using Gauss			
	equations	Elimination method.			
		Solve the given system of linear equations using Gauss			
		Jordan method.			
	Eigen values and	Find eigen values and Figen vectors of given matrix			
1b.Applications	Eigen vectors	The eigen values and Eigen vectors of given matrix.			
	Properties of Eigen	If λ is an eigen value of Matrix A then find eigen values of			
	values and Eigen	A^{III} or A^{-1} or $B = A^2 + k_1 A + K_2 I$ or			
	vectors	The eigen vectors corresponding to distinct eigen values			
		of real symmetric matrix are orthogonal.			
UNIT-II: Cayley-Hamilton theorem and quadratic forms:					
Cayley-Hamilton	theorem (without proc	of)-Finding inverse and power of a matrix by Cayley-			
Hamilton theorem	n-Reduction to Diagona	l form-Quadratic forms and nature of the quadratic forms-			
Reduction of quadratic form to canonical forms by orthogonal transformation.					
Unit	Module	Micro content			
	Cavley-Hamilton	Verify Cayley-Hamilton theorem for given matrix A and			

	theorem	hence find A^{-1} or A^4 .				
		Reduce the given matrix into diagonal form.				
	Quadratic Forms	Reduce the quadratic form into canonical form using				
		orthogonal transformation method.				
UNIT – III: Vect	or Differentiation:					
Scalar and Vector point functions-Vector Differential operator- Gradient – Directional derivatives						
Divergence – Cur	l – Laplacian second ord	er operator- Vector identities- Scalar Potential.				
Unit	Module	Micro content				
3a.		Find Gradient of given scalar function.				
Vector	Divergent, Curl and	Find Unit normal vector at given point on given surface.				
Differential	Gradient					
operator		Find divergent or Curl of given vector function.				
3h Vector	Vector identities	Find Scalar potential function.				
identities		Problems on Laplacian second order operator.				
lucitities		Prove the given vector identity.				
UNIT-IV: Vector Integration:						
Line integral – Work done – Circulation- Surface integral- Volume integral Vector integral theorem						
(without proof): C	Greens theorem in a plane	e- Stokes theorem- Gauss Divergence theorem.				
Unit	Module	Micro content				
4.5		Evaluate given line integration along the given curve.				
4a. Vector integration	Line integraton,	Find work done by force in moving a particle from A to B				
	surface integration &	along curve C.				
	volume integration	Find surface integral of vector function.				
		Find volume integral of vector function.				
4b.	Green's theorem,	Verify Green's theorem.				
Vector	Stoke's theorem and	Evaluate using stoke's theorem				
integration	Gauss Divergence					
theorems	throem.	Evaluate using Divergence theorem.				

UNIT– V: Solutions of Partial differential Equations:Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

Second order PDE: Solutions of linear partial differential equations with constant coefficients – RHS term of the type e^{ax+by} , sin(ax+by), cos(ax+by), $x^m y^n$.

Unit	Module	Micro content		
	Formation of PDF	Form PDE by eliminating arbitrary constants.		
5a. First order	I officiation of I DL	Form PDE by eliminating arbitrary functions.		
PDE	Solve First order	Solve first order linear PDE.		
	PDE	Solve first order non linear PDE.		
5b. Higher	Solve Second order	Solve Second order linear PDE with constant coefficients		
order PDE PDE.		with RHS terms e^{ax+by} , $\sin(ax+by)$, $\cos(ax+by)$, $x^m y^n$.		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1
CO3	3	2										1
CO4	3	2										1
CO5	3	2										1

CO-PO Mapping

II-Year-I Semester PC2101

Strength of Materials

L	Τ	Р	С	
3	0	0	3	

Pre-Requisites:Knowledge in Engineering Mechanics.

Preamble:This course introduces students to some basic mathematical ideas and tools which are at the core course of CSE. It introduces the concepts of number theory, graph theory and set theory.

Course objectives:

The main objectives are

- 1. To give preliminary concepts of strength of materials and principles of elasticity and plasticity, stress strain behavior of materials and their governing laws. The modulli of elasticity and their relations.
- 2. To impart concepts of bending moment and shear force for beams with different boundary and loading conditions and to draw the diagrams which shows variation along the span
- 3. To impart the concepts of measuring deflections in beams under various loading and supportconditions
- 4. To give concepts of stresses developed in the cross section using bending and shear stress equations.

5. To give concepts of torsion and governing torque equation, the power transmitted by shafts and deflection of close and open coiled springs under axial pull and axial couple.

UNIT-I: SIMPLE STRESSES AND STRAINS

Elasticity and plasticity (Definitions) – Types of stresses and strains– Hooke's law – stress – strain diagram for mild steel – Working stress – Factor of safety, Lateral strain, Poisson's ratio and volumetric strain – Elastic moduli and the relationship between them – Bars of varying section-simple problems – composite bars – Temperature stresses(Concept only).

Strain energy – Resilience – Gradual, sudden, impact and shock loadings – simple applications

UNIT-II: SHEAR FORCE AND BENDING MOMENT

Definition of beam – Types of beams – Concept of shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads (simple problems), uniformly distributed load, uniformly varying loads and combination of these loads– Point of contra flexure – Relation between S.F., B.M and rate of loading at a section of a beam.

UNIT- III: DEFLECTION OF BEAMS

Beam bending into a circular arc – slope, deflection and radius of curvature – Differential equation for the elastic line of a beam – Double integration and Macaulay's methods. Determination of slope and deflection for cantilever and simply supported beams subjected to point loads, U.D.L. uniformly varying load- Mohr's theorems – Moment area method – application to simple cases including overhanging beams.

Unit-IV: FLEXURAL STRESSES AND SHEAR STRESSES

14 HOURS

14 HOURS

13 HOURS

12 HOURS

Flexural Stresses:Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/y = E/R – Neutral axis – Determination of bending stresses – Section modulus of rectangular and circular sections (Solid and Hollow), I,T Angle and Channel sections – Design of simple beam sections.

Shear Stresses: Derivation of formula – Shear stress distribution across various beam sections like rectangular, circular, triangular, I, T and angle sections.

Unit-V: TORSION OF CIRCULAR SHAFTS AND SPRINGS

12 HOURS

Torsion of Circular Shafts:Theory of pure torsion – Derivation of Torsion equations: – Assumptions made in the theory of pure torsion – Torsion moment of resistance – Polar section modulus – Power transmitted by shafts – Combined bending and torsion and end thrust.

Springs: Introduction – Types of springs – deflection of close and open coiled helical springs under axial pull and axial couple –springs in series and parallel.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Analyse the stresses and strains in a member subjected to different loadings and		
	understand the strain energy under different load conditions. (Understanding, Analysing)		
CO2	Apply different methods and analyse the various beams subjected to different loads using		
	shear force and bending moment diagrams (Applying, Analysing)		
CO3	Compute deflections in beams due to different loading conditions.(Applying)		
CO4	<i>Evaluate</i> flexure and shear stresses for different beam sections. (Evaluating)		
CO5	Analyse the shafts and springs by applying principle of torsion (Applying, Analysing)		

Text books:

- 1. "Strength of materials", by R. K. Bansal, Volume 1 and 2.
- 2. "Strength of materials", by S.S. Bhavakati.

Reference books:

- 1. Strength of Materials by S.S. Rattan, Tata McGraw Hill Education Pvt. Ltd.
- 2. Strength of materials by R.K. Rajput, S. Chand & Co, New Delhi.
- 3. Strength of Materials by S.Ramamrutham, Dhanpat Rai Publishing Co., (P) Ltd. New Delhi
- 4. Theory of Structures by S.P.Timoshenko& DH. Young.

MICRO SYLLABUS

UNIT-I: SIMPLE STRESSES AND STRAINS

Elasticity and plasticity (Definitions) – Types of stresses and strains– Hooke's law – stress – strain diagram for mild steel – Working stress – Factor of safety, Lateral strain, Poisson's ratio and volumetric strain – Elastic moduli and the relationship between them – Bars of varying section-simple problems – composite bars (Concept and problems) – Temperature stresses(Concept only-no problems).

Strain energy – Resilience – Gradual, sudden, impact and shock loadings – simple applications

Unit	Module	Micro content
Ia. Elasticity and	stress – strain	Elasticity and plasticity, Types of stresses and
plasticity	diagram for mild	strains
-------------------	--	---
	steel	Hooke's law ,Working stress, factor of safety
		Young's modulus
	Flastic moduli	Shear modulus
	Liastic moduli	Bulk modulus
		Relation between them
	Stress- strain diagram for mild steel	stress – strain diagram for mild steel
	Bars of varying cross-section and composite bars	Concept and problems (simple)
	Temperature stresses	Concept only
Ib. Strain energy	Resilience, Gradual, sudden, impact and shock loadings –	Definitions
	simple applications.	Derivation of gradual and sudden loading
		Problems

UNIT-II: SHEAR FORCE AND BENDING MOMENT

Definition of beam – Types of beams – Concept of shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads (simple problems), uniformly distributed load, uniformly varying loads and combination of these loads– Point of contra flexure – Relation between S.F., B.M and rate of loading at a section of a beam.

Unit	Module Micro content				
	Introduction	Definition of beam, Types of beams			
		Concept of shear force and bending moment			
	Beams (simply supported , cantilever	Point loads			
II Shear Force		Uniformly Distributed Load			
and Bending		Uniformly Varying Load			
Moment	and overnanging)	Point loads Uniformly Distributed Load Uniformly Varying Load Simple problems Point of contra flexure and relation between load SF and BM			
	Point of contra flexure and relation between load, SF and BM	Point of contra flexure and relation between load , SF and BM			

UNIT-III: DEFLECTION OF BEAMS

Beambending into a circular arc–slope, deflection and radius ofcurvature – Differential equation for the elastic line of a beam – Double integration and Macaulay's methods. Determination of slope and deflection for cantilever and simply supported beams subjected to point loads, U.D.L. uniformly varying load- Mohr's theorems – Moment area method – application to cantilever and simply supported beams- simple cases.

Unit	Module	Micro content				
III.Deflection of beams		Concept of slope and deflection				
	Introduction	Beambending into a circular arc–slope, deflection and radius of curvature				

	(Concept only)
Double Integration method	Slopes and deflection for cantilever and simply supported beams subjected to point loads, U.D.L. uniformly varying load(concept and problems)
Macaulay's method	Slope and deflections for simply supported beams subjected to point loads, U.D.L, one side over hanging beam (Concept and problems)
Mohr's theorems – Moment area method	Application to cantilever and simply supported beams- simple cases.

UNIT-IV: FLEXURAL STRESSES AND SHEAR STRESSES

Flexural Stresses: Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/y = E/R – Neutral axis – Determination of bending stresses – Section modulus of rectangular and circular sections (Solid and Hollow), I, T Angle and Channel sections – Design of simple beam sections.

Shear Stresses: Derivation of formula – Shear stress distribution across various beam sections like rectangular, circular, triangular, I, T and angle sections.

Unit	Module	Micro content	
	Introduction	Theory of simple bending, assumptions Neutral axis	
IVa Flexural	Derivation of bending	M/I = f/y = E/R	
Stresses	equation	Determination of bending stresses	
	Section modulus	Rectangular, circular sections (Solid and	
		Hollow), I,T Angle and Channel sections	
		Design of simple beams sections.	
IVb. ShearIntroductionStrangenShear stresses	Introduction	Derivation and assumptions	
	Shear stresses	Rectangular, circular, triangular, I, T and angle	
011 63863	distribution	sections.	

UNIT-V: TORSION OF CIRCULAR SHAFTS AND SPRINGS

Torsion of Circular Shafts: Theory of pure torsion – Derivation of Torsion equations: – Assumptions made in the theory of pure torsion – Torsion moment of resistance – Polar section modulus – Power transmitted by shafts (concept and problems) – Combined bending and torsion and end thrust (Concept only-no problems).

Springs: Introduction – Types of springs – deflection of close and open coiled helical springs under axial pull and axial couple –springs in series and parallel (concept only).

Unit	Module Micro content			
Va. Torsion of Circular Shafts	Introduction	Theory of pure torsion, derivation and assumptions		
	introduction	Polar moment of inertia and torsion moment of resistance		
	Power transmitted by	Power transmitted by shafts (concept and problems		
	shafts	Combined bending and torsion and end		

		thrust(Concept only)		
Vb. Springs	Introduction	Types of springs		
		Close coiled helical spring under axial pull and axial couple		
	Deflection	Open coiled helical springaxial pull and axial couple		
		springs in series and parallel (concept only)		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2		2						1		
CO2	3	2		1						2		
CO3	2	2		2						2		
CO4	3	2		2						2		
CO5	3	2		2						1		

II-Year-I Semester PC2102

FLUID MECHANICS

L	Τ	Р	С
3	0	0	3

Course objectives:

The main objectives are

- 1. Understand the properties of fluid and their behavior at various conditions.
- 2. Understand the various forces acting on hydraulic structures and flow properties.
- 3. Understand the concept of conservation of mass and its application.
- 4. Understand the concept of energy and momentum conservation and their application.
- 5. Study behavior of fluid at various fluid properties and characteristics.
- 6. Study the energy losses in pipe flow and measurement of flow in pipes.

Unit-I: FLUID PROPERTIES

Physical properties of fluids – specific weight, specific gravity, viscosity, surface tension, vapor pressure and their influences on fluid motion, pressure at a point, classification of fluids, Pascal's law and its practical significance, Hydrostatic law of pressure distribution - atmospheric, absolute, gauge and vacuum pressures - measurement of pressure. Pressure gauges, Manometers – Piezometer, Differential U – tube Manometer and inverted U-tube manometer. Digital Manometers; Application of fluid properties in day to day life.

Unit-II: HYDRO STATICS AND FLUID KINEMATICS13 HOURS

Hydro Statics:Hydrostatic forces on submerged plane, Horizontal, Vertical, inclined and curved surfaces – Centre of pressure.

Fluid Kinematics: Description of fluid flow, Stream line, path line and streak line and stream tube. Classification of flows: Steady, unsteady, uniform, non-uniform, laminar, turbulent, rotational and ir-rotational flows – Equation of continuity for one, two, three dimensional flows – stream function and velocity potential function. Application of hydrostatic in regulation of flow in canals.

Unit-III: FLUID DYNAMICS13 HOURS

Surface and body forces – Euler's and Bernoulli's equations for flow along a stream line from the fundamentals and from Euler's equation – its limitations and applications. Momentum equation and its application – hydraulic analysis of the pipe bend.Application of energy equations in the field.

Unit-IV: MEASUREMENT OF FLOW13 HOURS

Classification of orifices, small orifice and large orifice. Difference between mouthpiece and orifice. Pitot tube, Venturimeter and Orifice meter - flow over rectangular, triangular, trapezoidal and Stepped notches - –Broad crested weirs.Digital flow measuring devices.

Unit-V: LAMINAR FLOW AND TURBULENT FLOWS14 HOURS

Reynold's experiment – its practical significance. Characteristics of Laminar & Turbulent flows, Laws of Fluid friction, Hagen-Poiseulle Formula, Flow between parallel plates, Flow through long tubes, hydrodynamically smooth and rough flows. Darcy-Weisbach equation, Minor losses – pipes in series – pipes in parallel – Total energy line and hydraulic gradient line, variation of friction factor with Reynold's number – Moody's Chart, Hazen-Williams formula.Conducting field survey for new advanced pipes and their losses (Case Base learning).

12 HOURS

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Explain the influence of the fluid properties in static condition and motion. (Understand)
CO2	State and explain hydrostatic forces on submersible hydraulic structures. (Apply)
CO3	Estimate various properties and characteristics in a pipe flow using continuity, momentum
	and energy equations. (Apply)
CO4	Analyze the behavior of fluids using mathematical equations in Laminar and Turbulent
	conditions. (Analyze)
CO5	Apply various devices to measure the flow in pipes and tanks. (Apply)

Text books:

- 1. Fluid Mechanics, P. N. Modi and S. M. Seth, Standard book house, New Delhi
- 2. A text of Fluid mechanics and hydraulic machines, R. K. Bansal Laxmi Publications (P) ltd., New Delhi Digital Design by Mano, PHI

Reference books:

- 1. Mechanics of Fluids, Merle C. Potter, David C. Wiggert and Bassem H. Ramadan, CENGAGE Learning.
- 2. Fluid Mechanics and Machinery, C.S.P. Ojha, R. Berndtsson and P.N. Chandramouli, Oxford Higher Education

Micro-Syllabus of Fluid Mechanics

Unit-I: FLUID PROPERTIES

Physical properties of fluids – specific weight, specific gravity, viscosity, surface tension, vapor pressure and their influences on fluid motion, pressure at a point, classification of fluids, Pascal's law and its practical significance, Hydrostatic law of pressure distribution - atmospheric, absolute, gauge and vacuum pressures - measurement of pressure. Pressure gauges, Manometers – Piezometer, Differential U – tube Manometer and inverted U-tube manometer. Digital Manometers; Application of fluid properties in day to day life.

Unit	Module	Micro content		
		specific weight of fluids		
		specific gravity of fluids		
		viscosity of fluids		
	Physical properties	surface tension of fluids		
		vapour pressure of fluids		
		simple problems on relationship among the		
Io/Ib Fluid		properties of fluids		
Properties	Deceel's law	Pascal's law		
Toperties	rascal s law	its practical significance		
	Hydrostatic law of pressure distribution	Hydrostatic law of pressure distribution		
		problems on Hydrostatic law of pressure		
		distribution		
	Magguramant of	Pressure gauges		
	pressure	Manometers		
		Piezometer		

Differential U – tube Manometer			
inverted U-tube manometer			
simple problems on U – tube differential manometer.			

Unit-II: HYDRO STATICS AND FLUID KINEMATICS

Hydro Statics:Hydrostatic forces on submerged plane, Horizontal, Vertical, inclined and curved surfaces – Centre of pressure.

Fluid Kinematics: Description of fluid flow, Stream line, path line and streak line and stream tube. Classification of flows: Steady, unsteady, uniform, non-uniform, laminar, turbulent, rotational and ir-rotational flows – Equation of continuity for one, two, three dimensional flows – stream function and velocity potential function. Application of hydrostatic in regulation of flow in canals.

Unit	Module	Micro content
		Horizontal surfaces
	Hydrostatic forces on submerged	Vertical surfaces
	plane	Inclined surfaces
		curved surfaces
		problems on vertical place
	Contar of prossure	surfaces
	Center of pressure	problems on inclined place
		surfaces
IIa/ IIb. Hydro	Stream line	Definitions and properties
Statics and Fluid Kinematics	path line	Definitions and properties
	stream tube	Definitions and properties
	Classification of flows	Classification of flows
	Classification of nows	practical examples
	continuity equation for three	Derivation
	dimensional flows	simple problems
	Starson francism	Stream function
	Sueam function	properties
	Valacity potential function	Velocity potential function
	velocity potential function	properties

Unit-III: FLUID DYNAMICS

Surface and body forces – Euler's and Bernoulli's equations for flow along a stream line from the fundamentals and from Euler's equation – its limitations and applications. Momentum equation and its application – hydraulic analysis of the pipe bend.Application of energy equations in the field.

Unit	Module	Micro content
IIIa/IIIb.Fluid	Euler's Equation	Derivation

Dynamics	Bernoulli's equation along a stream line	Derivation
		applications
		simple problems.
	Momentum equation	Momentum equation
		application
	Hydraulic analysis of pipe bend	simple problems on pipe bend

Unit-IV: MEASUREMENT OF FLOW

Classification of orifices, small orifice and large orifice. Difference between mouthpiece and orifice. Pitot tube, Venturimeter and Orifice meter - flow over rectangular, triangular, trapezoidal and Stepped notches - –Broad crested weirs. Digital flow measuring devices.

Unit	Module	Micro content
	flow moodurement	Derivation using the small
		orifice
	now measurement	Derivation using the large orifice
		numerical problems.
	velocity of flow	Derivation using Pitot tube
		numerical problems
		Derivation using Venturi meter
		Derivation using Orifice meter
		Derivation using rectangular
		notches
	flow measurement	Derivation using broad crested
IVa/ IVb.		weirs
Measurement of		numerical problems
Flow		error estimation in measured
		discharge
		Derivation using triangular
		notches
		error estimation in measured
		discharge.
		Derivation using trapezoidal
	discharge measurement	notches
		error estimation in measured
		discharge.
		Derivation using stepped notches
		error estimation in measured
		discharge.

Unit-V: LAMINAR FLOW AND TURBULENT FLOWS

Reynold's experiment – its practical significance. Characteristics of Laminar & Turbulent flows, Laws of Fluid friction, Hagen-Poiseulle Formula, Flow between parallel plates, Flow through long tubes, hydro dynamically smooth and rough flows. Darcy-Weisbach equation, Minor losses – pipes in series – pipes in parallel – Total energy line and hydraulic gradient line, variation of friction factor with Reynold's number – Moody's Chart, Hazen-Williams formula. Conducting

field survey for new advanced pipes and their losses (Case Base learning).				
Unit	Module	Micro content		
	Bounold's experiment	Reynold's experiment		
	Reynold's experiment	practical significance		
	laminar and turbulent flow	Difference between laminar and		
		turbulent flow		
	Hagan Doisaulla Formula	Derivation		
	Tragen-1 Official Tornula	simple numerical problems		
	Flow between parallel plates	Flow between parallel plates		
	Flow between parallel plates	simple numerical problems		
Va/Vb.Laminar Flow and Turbulent Flow	Deray Weishach equation	Derivation		
	Darcy-weisbach equation	Numerical problems		
	minor losses	Various types of minor losses		
	Pipes in series	Numerical Problems		
	pipes in parallel	Numerical Problems		
	energy line	Total energy line		
	gradient line	hydraulic gradient line		
	friction factor	variation of friction factor with		
		Reynold's number		
	Moody's Chart	Theory only		
	Hazen-Williams formula	Theory only		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1										
CO2		2		3								
CO3		2		3								
CO4	2			3								
CO5	3	1		2								

II-Year-I Semester

PC2103

SURVEYING

L	Τ	Ρ	С
3	0	0	3

Course objectives:

The main objectives are

- 1. To understand the concept of chain surveying, instruments for chaining and the concept of linear measurements.
- 2. To Know about the compass, angles and bearings. To know the application of compass in the field work. To know the concept of traversing.
- 3. To find the elevation difference between various points. To know about various methods of levelling. To Know the uses of contour maps and locating the contours.
- 4. To know how to operate the theodolite. To find the horizontal & vertical angles. To understand the concept of tachometry.
- 5. To calculate the areas along irregular boundaries and volume of earthwork from various rules. To Know the elements of simple & compound curves. To understand the basic concepts behind the EDM, Total station, GIS & GPS.

Unit-I: FUNDAMENTAL CONCEPTS, LINEAR MEASUREMENTS & CHAIN SURVEYING13 HOURS

Introduction: Object, Primary divisions, Classification & Principles of Surveying. Scales- Plane & Diagonal. Error due to use of wrong scale, Shrunk scale.

Chain Surveying: Instruments for chaining, Ranging out survey lines, Error due to incorrect chain, Errors in chaining, Tape corrections.Chain triangulation, Survey stations, Survey lines, Field book, Obstacles in chaining, Cross staff survey.

Unit-II: COMPASS SURVEYING & TRAVERSING13 HOURS

Compass Surveying:Introduction, Definitions, Designation of bearings, Types of compass, temporary adjustments of compass, Included angles, Magnetic declination, Dip, Local attraction, Errors in compass survey.

Traversing: Introduction of traversing, Methods of traversing, Closing error, Balancing a traverse.

Unit-III: LEVELLING AND CONTOURING13 HOURS

Levelling:Definitions in levelling, Methods of levelling, levelling instruments, Temporary adjustments of a level, Principles of levelling, Bookings & Reducing levels, Curvature & Refraction, Errors in Levelling.

Contouring: Introduction of contouring, Definitions, Characteristics of contours, Methods of locating contours, Uses of contour maps.

Unit-IV: THEODOLITE AND TACHEOMETRIC SURVEYING12 HOURS

Theodolite: Introduction of theodolite, Definitions, Temporary adjustments, Measurement of Horizontal angles & Vertical angles. Fundamental lines and desired relations.

Tachometric Surveying: Introduction of tachometry, Methods of tachometry- Fixed hair method, Movable hair method & Tangential method.

Unit-V: CALCULATION OF AREA & VOLUME, CURVES, EDM, TOTAL STATION, GIS & GPS 14 HOURS

Calculation of Area & Volume: Computation of area from offsets area from coordinates. Volume- Measurements from cross sections, Prismoidal formula, Trapezoidal formula. Volume from spot levels & volume from contour plan.

Total Station: Introduction of curves & Classification. Elements of simple & compound curves. Introduction of EDM, Total station, Remote sensing, GIS (Geographic Information System) & GPS (Global Positioning System). Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand the concept of chain surveying, instruments for chaining and the overall		
	concept of linear measurements. (Remembering, Understanding & Applying)		
CO2	Know the uses of compass, calculate the angles from bearings. Understand the concept of		
	declination & Local attraction. Application of compass in the field work. Know the		
	Concept of traversing & its applications. (Remembering, Understanding & Applying)		
CO3	Find the elevation difference between various points using a level. Understand the		
	concept of various methods of levelling. Know the uses of contour maps in the field and		
	locating the contours. (Remembering, Understanding & Applying)		
CO4	Operate the theodolite & find the horizontal & vertical angles. Know the uses of		
	tacheometry & find the distance & elevation of different points (Remembering,		
	Understanding & Applying)		
CO5	Calculate the areas along irregular boundaries & area from coordinates. Find the volume		
	of earthwork from various rules. Know the elements of simple & compound curves.		
	Understand the basic concepts behind the EDM, Total station, GIS & GPS.		
	(Remembering, Understanding & Applying)		

Text books:

- 1. Surveying, Vol. I & II by Dr. B. C. Punmia, Ashok K. Jain, ArunK.Jain, Laxmi Publications.
- 2. Surveying, Vol. I & II by S. K. Duggal, TataMc-Graw Hill.

Reference books:

- 1. Surveying and Levelling by N. N. Basak, Tata McGraw Hill.
- 2. Surveying Vol. I & II by Dr. K. R. Arora, Standard Book House.
- 3. Surveying and Levelling by Subramanian, Oxford University Press.
- 4. Textbook of Surveying by C. Venkatramaiah, University Press.

e-resources:

- https://nptel.ac.in/courses/105/107/105107122/
- https://nptel.ac.in/courses/105/104/105104101/

Micro-Syllabus of Surveying

Unit-I: FUNDAMENTAL CONCEPTS, LINEAR MEASUREMENTS & CHAIN SURVEYING

Introduction: Object, Primary divisions, Classification & Principles of Surveying. Scales- Plane & Diagonal. Error due to use of wrong scale, Shrunk scale.

Chain Surveying: Instruments for chaining, Ranging out survey lines, Error due to incorrect chain, Errors in chaining, Tape corrections.Chain triangulation, Survey stations, Survey lines, Field book, Obstacles in chaining, Cross staff survey.

Unit	Module	Micro content
Ia/Ib.Fundamental		Object of surveying,
Concepts , Linear	Object, Primary divisions, Classification	Divisions: Plane & Geodetic
Measurements and	& Principles of Surveying	Classification of surveying
Chain Surveying		Principles of surveying

		Scales- Plane scale &
		Diagonal scale
	Scales- Plane & Diagonal. Error due to	Formula of error due to wrong
	use of wrong scale, Shrunk scale	scale- Short problems
		Formula of Shrunkscale- Short
		problems
	Instruments for chaining	Instruments for chaining
	Banaina aut autway lines	Direct & Indirect ranging
	Ranging out survey lines	Ranging
		Formula for error due to
	Error due to incorrect chain	incorrect chain- Short
		problems
	From in chaining	Cumulative & Compensating
		errors
	Tape corrections	Absolute length, temperature,
		pull, sag, slope corrections-
		Short problems
		Chain triangulation,
	Chain triangulation, Survey stations,	Terminology, Field book-
	Survey lines, Field book	Single line & Double line field
		book
		Obstacles to chaining,
	Obstacles in chaining	Obstacles to Ranging,
		Obstacles to both (Concept
		only, No problems)
	Cross staff survey	Concept & problems on Cross
	CIUSS Stall Sulvey	staff survey

Unit-II: COMPASS SURVEYING & TRAVERSING

Compass Surveying:Introduction, Definitions, Designation of bearings, Types of compass, temporary adjustments of compass, Included angles, Magnetic declination, Dip, Local attraction, Errors in compass survey.

Traversing: Introduction of traversing, Methods of traversing, Closing error, Balancing a traverse.

Unit	Module	Micro content
		Introduction, Definitions
		Designation of bearings-
	Introduction, Definitions, Designation of	Whole circle bearings &
	bearings	Quadrantal bearings,
IIa/ IIb. Compass Surveying & Traversing		Conversions- Fore bearing &
		Back bearing, Conversions.
	Types of compass, temporary adjustments of compass	Prismatic compass &
		Surveyor's compass,
		Difference between
		Surveyor's & Prismatic
		compass

		-		
		Temporary adjustments of		
		Prismatic compass		
		Angles from bearings,		
		Bearings from angles.		
		Magnetic declination,		
	Included angles, Magnetic declination,	Variations in Declinations.		
	Dip, Local attraction, Errors in compass	Problems in Declination		
	survey	Local attraction, Elimination		
		of local attraction, Problems		
		on local attraction		
		Errors in compass survey		
		Introduction, Methods of		
	Introduction of traversing, Methods of traversing, Closing error, Balancing a traverse.	traversing		
		Closing error concept		
		Balancing the traverse by		
		Bowditch's method, Transit		
		method & Axis method only.		

Unit-III: LEVELLING AND CONTOURING

Levelling:Definitions in levelling, Methods of levelling, levelling instruments, Temporary adjustments of a level, Principles of levelling, Bookings & Reducing levels, Curvature & Refraction, Errors in Levelling.

Contouring: Introduction of contouring, Definitions, Characteristics of contours, Methods of locating contours, Uses of contour maps.

Unit	Module	Micro content			
		Definitions in levelling			
	Definitions in levelling Matheds of	Methods of levelling			
	levelling I evelling instruments	Levelling instruments- Level			
	Temporary adjustments of a level	& Staff only			
	Temporary adjustments of a level	Temporary adjustments of a			
		level			
		Steps in levelling, Differential			
		levelling			
		Bookings & Reducing levels-			
IIIa/IIIb.Levelling	Principles of leveling, Bookings &	H.I Method & Rise and fall			
and Contouring	Reducing levels, Curvature &	method. Problems on both			
	Refraction, Errors in Levelling.	methods			
		Correction for Curvature &			
		Refraction			
		Refraction Errors in levelling			
		Introduction of contouring			
	Introduction of contouring, Definitions,	Characteristics of contours			
	Characteristics of contours, Methods of	Methods of locating contours			
	locating contours, Uses of contour maps.	Uses of contour maps.			

Unit-IV: THEODOLITE AND TACHEOMETRIC SURVEYING

Theodolite: Introduction of theodolite, Definitions, Temporary adjustments, Measurement of Horizontal angles & Vertical angles. Fundamental lines and desired relations. Tachometric Surveying: Introduction of tachometry, Methods of tachometry- Fixed hair method, Movable hair method & Tangential method. Unit Module **Micro content** Introduction of theodolite, Definitions Temporary adjustments, Measurement of Horizontal Introduction of theodolite, Definitions, angles by Repetition method Temporary adjustments, Measurement of & Reiteration methods Horizontal angles & Vertical angles. Vertical angle by general Fundamental lines and desired relations. method Iva/ IVb. Fundamental lines and desired **Theodolite And** relations, Errors in theodolite **Tacheometric** survey Surveying Introduction of tachometry Methods of tachometry- Fixed hair method. Movable hair Introduction of tacheometry, Methods of method & Tangential method tacheometry-Fixed hair method, Principle of stadia method, Movable hair method & Tangential Distance & Elevation method. formulae for staff vertical condition. Problems Tangential method, Problems

Unit-V: CALCULATION OF AREA & VOLUME, CURVES, EDM, TOTAL STATION, GIS & GPS

Calculation of Area & Volume: Computation of area from offsets area from coordinates. Volume- Measurements from cross sections, Prismoidal formula, Trapezoidal formula. Volume from spot levels & volume from contour plan.

Total Station: Introduction of curves & Classification. Elements of simple & compound curves.

Introduction of EDM, Total station, Remote sensing, GIS (Geographic Information System) & GPS (Global Positioning System).

Unit	Module	Micro content
Va/ Vb.Calculation of Area & Volume, Curves, Edm, Total Station, GIS & GPS	Computation of area from offsets area from coordinates. Volume- Measurements from cross sections, Prismoidal formula, Trapezoidal formula. Volume from spot levels & volume from contour plan.	Micro contentComputation of area from offsets- Mid ordinate, Average ordinate, Trapezoidal & Simpson's ruleArea by co-ordinatesVolume- Measurements from cross sections- Level section onlyVolume by Trapezoidal & Prismoidal rules onlyVolume from spot levels &

	Introduction of curves & Classification. Elements of simple & compound curves.	Introduction of curves & Classification Elements of simple curve Elements of compound curve	
	Introduction of EDM, Total station,	Introduction of EDM, Total station Introduction of Remote sensing	
	Remote sensing, GIS (Geographic Information System) & GPS (Global Positioning System).	Introduction of GIS (Geographic Information System) Introduction of GPS (Global Positioning System)	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2									2	
CO2	3	2									2	
CO3	2	2									2	1
CO4	3	2			1						2	1
CO5	3	2			2						2	3

II-Year-I Semester PC2104

CONCRETE TECHNOLOGY

-	L	Τ	Р	С
	3	0	0	3

Course objectives:

The main objectives are

- 1. Identify the physical and chemical properties of concrete ingredients and able to conduct tests on cement and aggregates.
- 2. Comprehend the workability of concrete, manufacturing processes of concrete and the behavior of fresh, hardened concrete.
- 3. Gain the knowledge about NDT methods, quality control of concrete and how to conduct the tests on hardened concrete.
- 4. Identify the properties like elasticity, creep, shrinkage; special concretes and their applications in the diverse construction field.
- 5. Acquire the practical knowledge on mix design principles, concepts and methods.

Unit-I: CONCRETE INGREDIENTS & ITS PROPERTIES 14 HOURS Cements & Admixtures: Portland cement – Chemical composition – Hydration, setting of cement – Structure of hydrated cement – Tests on physical properties – Different grades of cement – Admixtures – Mineral and chemical admixtures.

Aggregates: Classification of aggregate – Particle shape & texture – Bond, strength & other mechanical properties of aggregate – Specific gravity, bulk density, porosity, adsorption & moisture content of aggregate – Bulking of sand – Deleterious substance in aggregate – Soundness of aggregate – Alkali aggregate reaction – Thermal properties – Sieve analysis – Fineness modulus – Grading curves – Grading of fine & coarse Aggregates – Gap graded aggregate – Maximum size of aggregate.

Unit-II: FRESH & HARDENED CONCRETE

13 HOURS

Fresh Concrete: Production of concrete, mixing, compaction curing, Properties of fresh concrete. Workability – Factors affecting workability – Measurement of workability bydifferenttests–Settingtimesofconcrete–Effectoftimeandtemperatureonworkability– Segregation & bleeding.

Hardened Concrete: Water / Cement ratio – Abram's Law – Gel Space ratio – Nature of strength of concrete – Maturity concept – Strength in tension & compression – Factors affecting strength – Relation between compression & tensile strength -Curing.

Unit-III: TESTING AND QUALITY CONTROL OF CONCRETE13 HOURS

Testing of Hardened Concrete: Compression tests–Tension tests–Factors affecting strength – Flexure tests–Splitting tests–Non-destructive testing methods– codal provisions for NDT.

Quality control of Concrete: Behavior of concrete in extreme environment; temperature problem in concreting, hot weather, cold weather and under water conditions, Resistance to freezing, sulphate and acid attack, efflorescence, fire resistance; Inspection and testing of concrete-Concrete cracking, types of cracks, causes and remedies.

Unit-IV: PHYSICAL PROPERTIES OF CONCRETE AND SPECIAL CONCRETES

15 HOURS

Elasticity, Creep & Shrinkage: Modulus of elasticity – Dynamic modulus of elasticity – Poisson's ratio – Creep of concrete – Factors influencing creep – Relation between creep & time – Nature of creep – Effects of creep – Shrinkage – Types of shrinkage.

Special concretes: Light weight aggregates – Lightweight aggregate concrete – Cellular concrete – No-fines concrete – High density concrete – Fibre reinforced concrete – Different types of fibres– Factors affecting properties & Applications of F.R.C – Polymer concrete – Types of Polymer concrete – Properties of polymer concrete & Applications – High performance concrete – Self consolidating concrete – SIFCON.

Unit-V: MIX DESIGN10 HOURS

Factors in the choice of mix proportions – Durability of concrete– Statistical methods – Acceptance criteria – Proportioning of concrete mixes by various methods – BIS method of mix design.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Illustrate the physical and chemical properties of concrete ingredients and able to conduct	
	tests on cement and aggregates.	
CO2	Clarify the physical properties of fresh and hardened concrete and also about the	
	manufacturing of concrete.	
CO3	Estimate the creep and shrinkage of concrete and how to conduct the different tests such	
	as compression and tension on hardened concrete and also summarize the quality control	
	of concrete under different conditions.	
CO4	Distinguish the special concretes like Self compacting concrete, Fibre reinforced concrete,	
	Polymer concrete and light weight concrete etc.	
CO5	Design the mix proportions for the specific work for required strength and workability	
	with available materials at workplace.	

Text books:

- 1. Concrete Technology by M. S. Shetty S. Chand & Co. ;2004
- 2. Properties of Concrete by A. M. Neville Low priced Edition 4th edition
- 3. Concrete Technology by M.L. Gambhir Tata Mc. Graw Hill Publishers, NewDelhi

Reference books:

- 1. Concrete Technology by A.R. Santha Kumar, Oxford University Press, NewDelhi.
- 2. Concrete Technology by A.R. Santha Kumar, Edition-2013, Oxford University Press, New Delhi.
- 3. Design of Concrete Mixes by N.Krishnam Raju,2nd edition,CBS Publishers & Distributors
- 4. Concrete: Microstructure, Properties and materials by P Kumar Mehta, P J M Monteiro, MC Graw Hill Education Publisher, New Delhi.
- 5. Concrete Technology by R.S. Varshney, Oxford and IBH.

Code Books:

- ▶ IS10262: 2019 Guidelines for concrete mix design proportioning
- ➤ IS 456: 2000 Plain and Reinforced Concrete Code of Practice

Micro-Syllabus of Concrete Technology

Unit-I: CONCRETE INGREDIENTS & ITS PROPERTIES

Cements & Admixtures: Portland cement – Chemical composition – Hydration, setting of cement – Structure of hydrated cement – Tests on physical properties – Different grades of cement – Admixtures – Mineral and chemical admixtures.

Aggregates: Classification of aggregate – Particle shape & texture – Bond, strength & other mechanical properties of aggregate – Specific gravity, bulk density, porosity, adsorption & moisture content of aggregate – Bulking of sand – Deleterious substance in aggregate – Soundness of aggregate – Alkali aggregate reaction – Thermal properties – Sieve analysis – Fineness modulus – Grading curves – Grading of fine & coarse Aggregates – Gap graded aggregate – Maximum size of aggregate.

Unit	Module	Micro content
		Portland cement: history ,manufacturing
		process
		Chemical composition of cement, bouge's compounds and their functions
		Cement hydration, hydration 5 stages, setting times
		Structure of hydrated cement
Ia/Ib. Concrete Ingredients & its Properties	Cements & Admixtures	Tests on physical properties: sp.gravity, fineness, compressive strength, normal consistency, initial and final setting time, soundness
		Admixtures: purpose and applications, types of admixtures
		Various Mineral and chemical admixtures and their applications.
		Various types of cement and their applications.
		Classification of aggregate
		Particle shape & texture
		mechanical properties of aggregate -
	Aggregates	Specific gravity, bulk density, porosity,
		adsorption & moisture content of aggregate
		Bulking of sand
		Alkali aggregate reaction - factors

affecting- control measures
Sieve analysis – Fineness modulus –
Grading curves – Grading of fine & coarse
Aggregates – Gap graded aggregate
Maximum size of aggregate IS 456
recommendations.

Unit-II: FRESH & HARDENED CONCRETE

Fresh Concrete: Production of concrete, mixing, compaction curing, Properties of fresh concrete. Workability – Factors affecting workability – Measurement of workability bydifferenttests–Settingtimesofconcrete–Effectoftimeandtemperatureonworkability–Segregation & bleeding.

Hardened Concrete: Water / Cement ratio – Abram's Law – Gel Space ratio – Nature of strength of concrete – Maturity concept – Strength in tension & compression – Factors affecting strength – Relation between compression & tensile strength -Curing.

Unit	Module	Micro content
		Various stages Production of concrete: Batching,Mixing, Transporting, Placing, Compacting, Finishing, Curing
		Properties of fresh concrete. Workability – Factors affecting workability–Measurement of workability by different tests:
	Fresh Concrete	slump, compaction factor, vee-bee tests
IIa/IIb. Fresh and Hardened Concrete		Effect of time and temperature on workability
		Initial and final Setting times of concrete
		Segregation & bleeding, factors affecting and control measures
		Water / Cement ratio, role of w/c ratio in strength contribution
	Hardened Concrete	Abram's Law – Gel Space ratio – Maturity concept-plowman's maturity equation problems
		Factors affecting strength – Relation between compression & tensile strength

Unit-III: TESTING AND QUALITY CONTROL OF CONCRETE

Testing of Hardened Concrete: Compression tests–Tension tests–Factors affecting strength –Flexure tests–Splitting tests–Non-destructive testing methods– codal provisions for NDT.

Quality control of Concrete: Behavior of concrete in extreme environment; temperature problem in concreting, hot weather, cold weather and under water conditions, Resistance to freezing, sulphate and acid attack, efflorescence, fire resistance; Inspection and testing of concrete-Concrete cracking, types of cracks, causes and remedies.

Unit	Module	Micro content				
		Compression tests: cubes and cylinders as per				
		Indian standard				
		Tension test: direct and split tensile strength				
	Testing of	Flexure tests Tension tests: 4 point bending				
	Hardened Concrete	test				
		Various Non- destructive testing methods and				
IIIa/IIIb Testing		their applications				
and Quality		Rebound hammer and UPV test				
and Quanty		methodology.				
Concrete		Behavior of concrete in extreme environme				
		Micro contentCompression tests: cubes and cylinders as perIndian standardTension test: direct and split tensile strengthFlexure tests Tension tests: 4 point bendingtestVarious Non- destructive testing methods andtheir applicationsRebound hammer and UPV testmethodology.Behavior of concrete in extreme environmenttemperature problem in concreting, howweather, cold weather and under waterconditions: control techniquesResistance to freezing, sulphate and acidattack, efflorescence, fire resistance;Concrete cracking, types of cracks, causesand remedies				
		Micro content Compression tests: cubes and cylinders as per Indian standard Tension test: direct and split tensile strength Flexure tests Tension tests: 4 point bending test Various Non- destructive testing methods and their applications Rebound hammer and UPV tes methodology. Behavior of concrete in extreme environment temperature problem in concreting, ho weather, cold weather and under wate conditions: control techniques Resistance to freezing, sulphate and acid attack, efflorescence, fire resistance; Concrete cracking, types of cracks, causer and remedies				
	Quality control of	Compression tests: cubes and cylinders as perIndian standardTension test: direct and split tensile strengthFlexure tests Tension tests: 4 point bendingtestVarious Non- destructive testing methods andtheir applicationsRebound hammer and UPV testmethodology.Behavior of concrete in extreme environmenttemperature problem in concreting, hotweather, cold weather and under waterconditions: control techniquesResistance to freezing, sulphate and acidattack, efflorescence, fire resistance;Concrete cracking, types of cracks, causesand remedies				
	Concrete					
		attack, efflorescence, fire resistance;				
		Concrete cracking, types of cracks, causes				
		and remedies				

Unit-IV: PHYSICAL PROPERTIES OF CONCRETE AND SPECIAL CONCRETES

Elasticity, Creep & Shrinkage: Modulus of elasticity – Dynamic modulus of elasticity – Poisson's ratio – Creep of concrete – Factors influencing creep – Relation between creep & time – Nature of creep – Effects of creep – Shrinkage – Types of shrinkage. **Special concretes:** Light weight aggregates – Lightweight aggregate concrete – Cellular concrete – No-fines concrete – High density concrete – Fibre reinforced concrete – Different types of fibres– Factors affecting properties & Applications of F.R.C – Polymer concrete – Types of Polymer concrete – Properties of polymer concrete & Applications – High performance concrete – Self consolidating concrete – SIFCON.

Unit	Module	Micro content
IVa/IVb. Physical Properties of Concrete and Special Concretes	Elasticity, Creep & Shrinkage	Modulus of elasticity, measurement concrete elasticity, various types of modulus of elasticity: initial tangent, tangent, secant modulus, and chord modulus Relation between modulus of elasticity and compressive strength Creep, factors effecting creep, creep measurement Relation between creep & time – Nature of creep Shrinkage: types: plastic, dry, autogenous, carbonation shrinkage, factors affecting and control measures
	Special concretes	Introduction and applications Light weight aggregates, Lightweight aggregate concrete, Cellular concrete, No- fines concrete
		High density concrete

Fibre reinforced concrete, Different types of
fibres, Factors affecting properties &
Applications of F.R.C
Polymer concrete – Types of Polymer
concrete – Properties of polymer concrete &
Applications
High performance concrete
Self-consolidating concrete
SIFCON
Self-healing concrete

Unit-V: MIX DESIGN

Factors in the choice of mix proportions – Durability of concrete– Statistical methods – Acceptance criteria – Proportioning of concrete mixes by various methods – BIS method of mix design.

Unit	Module	Micro content
Va/Vb. Concrete Mix Design	Durability requirements and acceptance criteria	Durability of concrete : durability requirements as per IS456 Factors in the choice of mix proportions Statistical methods –Acceptance criteria List of variousmethods of Proportioning of concretemixes
	IS method of mix	BISmethodofmixdesign as per 10262:2019.
	design	Problems on Mix design as per IS10262

CO – PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3		2	2			2				2	1
CO2	3	2	2	2							1	2
CO3	2	2	1	2								
CO4	3		2				1				1	1
CO5	3	3	3				1				2	2

II-Year-ISemesterSTRENGTH OF MATERIALS LABPC2101LPC2101L

L	Τ	Р	С
0	0	3	1.5

Course objectives:

The main objectives are

- 1. Providing hands on practice on material behavior subjected to tensile, compressive, torsion and shear loadings.
- 2. The course also deals with material hardness and impact resistance.

List of Experiments

- 1. Study of stress-strain characteristics of Mild steel/HYSD bars by UTM.
- 2. Determination of modulus of elasticity of the material of the beam by conducting bending test on simply supported beam.
- 3. Determination of modulus of elasticity of the material of the beam by conducting bending test on Cantilever beam.
- 4. Verification of Maxwell's Reciprocal theorem on beams.
- 5. Determination of modulus of elasticity of the material of the beam by conducting bending test on simply supported beam with one end overhang.
- 6. Determination of modulus of rigidity by conducting torsion test on solid circular shaft.
- 7. Determination of hardness of the given material by Brinnel's/Vicker's/ test
- 8. Determination of hardness of the given material by Rockwell hardness test.
- 9. Determination of impact strength of the given material by conducting Charpy/Izod test
- 10. Determination of ultimate shear strength of steel by conducting direct shear test.
- 11. Determination of modulus of rigidity of the material of closely coiled helical spring.
- 12. Determination of compressive strength of wood/ concrete cube/ brick/ with grain parallel / perpendicular to loading.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Perform necessary experiments to determine the mechanical properties of materials under
	different loading conditions

CO2 | Analyze the experimental results for assessment of the strength of the given material.

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 3 2 **CO2** 3 2

SURVEYING FIELD WORK

L	Τ	Ρ	С
0	0	3	1.5

Course objectives:

• To know about various surveying instruments & their applications in the field.

List of Experiments

- 1. Survey of an area by Chain surveying using chain & cross staff.
- 2. Chaining across obstacles.
- 3. Determination of distance between two inaccessible points using prismatic compass.
- 4. Radiation & intersection methods by Plane table.
- 5. Differential levelling using auto level.
- 6. Contouring by Indirect method.
- 7. Measurement of horizontal & vertical angles using theodolite.
- 8. Trigonometric levelling: Base is accessible & inaccessible conditions.
- 9. Determination of Tachometric constants- Field procedure.
- 10. Determination of elevation & horizontal distance of a point using tachometer.
- 11. Setting out simple curve.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Do plane surveying with chain, compass & plane table.
CO2	Do levelling & contouring.
CO3	Operate the theodolite & tachometer in the field applications.
CO4	Setting out simple curve.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3						2		2			
CO2	3						2		2			
CO3	3						2		2			
CO4	3						2		2			

II-Year-I Semester PC2103L

CONCRETE TECHNOLOGY LAB

L	Т	Р	С
0	0	3	1.5

Course objectives:

The main objective is

• To test the basic properties, ingredients of cement, fresh and hardened concrete properties.

List of ExperimentsAt least 10 Experiments must be conducted

Tests on Cement

- 1. Determination of specific gravity of cement.
- 2. Determination of fineness of cement By dry sieving
- 3. Determination of normal Consistency of Cement
- 4. Determination of initial and final setting time of cement.
- 5. Determination of compressive strength of cement.
- 6. Determination of soundness of cement.
- 7. Determination of fineness of cement by air permeability method.

Tests on Aggregate

- 8. Determination of specific gravity of fine aggregate and coarse aggregate
- 9. Determination of grading and fineness modulus of fine aggregate and coarse aggregate by sieve analysis.
- 10. Determination of bulking of sand.

Tests on fresh Concrete

- 11. Determination of workability of concrete by slump test
- 12. Determination of workability of concrete by compaction factor method.
- 13. Determination of workability of concrete by Vee-bee consistency test.

Tests on hardened Concrete

- 14. Determination of compressive strength of concrete
- 15. Determination of split tensile strength of concrete.
- 16. Determination of young's modulus of concrete. (Demonstration)
- 17. Non-Destructive testing on concrete using rebound hammer

Course Outcomes: Upon successful completion of the course, the student will be able to

- **CO1** Able to conduct experiment and determine the various Laboratory tests on cement
- **CO2** Able to conduct experiment and determine the properties of fine and course aggregate
- **CO3** Able to conduct experiment and determine the properties of fresh concrete

CO4 Able to conduct experiment and determine the properties of Hardened concrete

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3						2		2			
CO2	3						2		2			
CO3	3						2		2			
CO4	3						2		2			
CO5	3						2		2			

II-Year-I Semester SOC2101

ADVANCED AUTO CAD

L	T	Ρ	С
0	0	4	2

Course objectives:

The main objective is

1. To develop skills to use AUTOCAD Software to create 2D Drawings and 3D Models.

List of Experiments

- 1. Symbols for various materials used
- 2. King post truss
- 3. Queen Post truss
- 4. English bond
- 5. Flemish Bond
- 6. Dog Legged Staircase
- 7. Double Panel Door and their parts
- 8. Window and their parts
- 9. Plotting a site using chain surveying field book.
- 10. Finding the area of the given boundary using compass (Closed Traverse).
- 11. Plotting Road profile (Longitudinal section and cross section)
- 12. Isometric Drawings in 3D for simple figures
- 13. Learning Different Operations like Threading, Sweep, Loft
- 14. Preparation of map using total station coordinates

Note:

Student is required to complete minimum of 12 drawings

II-Year-I Semester MC2101

ENVIRONMENTAL STUDIES

L	Τ	Р	С
2	0	0	0

Course objectives:

The main objective is

1. To make the students to get awareness on environment, to understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day-to-day activities of human life to save earth from the inventions by the Engineers.

UNIT – I: MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES 13 HOURS

Definition, Scope and Importance - Need for Public Awareness.

Natural Resources : Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. – Energy resources.

UNIT - II: Ecosystems, Biodiversity, and its Conservation13 HOURS

Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem
- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity and its Conservation : Definition: genetic, species and ecosystem diversity – Biogeographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT – III: Environmental Pollution and Solid Waste Management12 HOURSEnvironmental Pollution: Definition, Cause, effects and control measures of :12 HOURS

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

SOLID WASTE MANAGEMENT: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies –

Disaster management: floods, earthquake, cyclone and landslides.

UNIT - IV: Social Issues and the Environment

14 HOURS Social Issues and the Environment: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies -Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies - Wasteland reclamation. -Consumerism and waste products. - Environment Protection Act. - Air (Prevention and Control of Pollution) Act. - Water (Prevention and control of Pollution) Act - Wildlife Protection Act -Forest Conservation Act - Issues involved in enforcement of environmental legislation - Public awareness.

UNIT – V: Human Population and the Environment

13 HOURS

Human Population and the Environment: Population growth, variation among nations. Population explosion - Family Welfare Programmed. - Environment and human health - Human Rights - Value Education - HIV/AIDS - Women and Child Welfare - Role of information Technology in Environment and human health - Case studies.

Field Work: Visit to a local area to document environmental assets River/forest grassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds - river, hill slopes, etc.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Able to Understand The concepts of the ecosystem
CO2	Able to Understand The natural resources and their importance
CO3	Able to learn The biodiversity of India and the threats to biodiversity ,and Apply conservation
	practices
CO4	Able to learn Various attributes of the pollution and their impacts
CO5	Able to Understand Social issues both rural and urban environment. And able to
	Understand About environmental Impact assessment and Evaluate the stages involved in
	EIA

Text books:

- 1. Text book of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission, Universities Press.
- 2. Environmental Studies by Palaniswamy Pearson education
- 3. Environmental Studies by Dr.S.Azeem Unnisa, Academic Publishing Company

Reference books:

- 2. Textbook of Environmental Science by Deeksha Dave and E.Sai Baba Reddy, Cengage Publications.
- 3. Text book of Environmental Sciences and Technology by M.Anji Reddy, BS Publication.
- 4. Comprehensive Environmental studies by J.P.Sharma, Laxmi publications.
- 5. Environmental sciences and engineering J. Glynn Henry and Gary W. Heinke Prentice hall of India Private limited.
- 6. A Text Book of Environmental Studies by G.R.Chatwal, Himalaya Publishing House.

II-Year-II Semester	
ES2201	

SCIENTIFIC COMPUTING USING **PYTHON**

L	Т	Ρ	С
3	0	0	3

Pre-Requisites: Engineering Mathematics

Course objectives:

- 1. To understand basic operations in Python
- 2. To apply use if-else statements and switch-case statements to write programs in Python to tackle any decision-making scenario
- 3. To Perform, Store and retrieve information using Data structures
- 4. To Understand Use of python libraries for problem solving
- 5. To Create graphical form representation for computed data.

Unit-1: INTRODUCTION AND DATA TYPES

Introduction: History of Python, Need of Python Programming, Applications of python, Running Python Scripts, Variables, Assignment, Keywords and Identifiers, Input-Output, Indentation.

Data Types: Integers, Floats, Complex Numbers, Strings, Booleans; Type Conversion.

Unit-2: OPERATORS AND CONTROL FLOW12 HOURS

Operators: Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators, Identity Operators, Expressions and order of evaluations

Control Flow:Boolean Expression, if, if-else, for, while, break, continue, pass.

Unit-3: DATA STRUCTURES AND FUNCTIONS13 HOURS

Data Structures: Lists - Operations, Slicing, Methods; Tuples, Sets, Dictionaries, Sequences and Comprehensions.

Functions: Defining Functions, Calling Functions, Passing Arguments, Keyword Arguments, Default Arguments, Variable-length arguments, Recursive and Anonymous Functions, Fruitful Functions (Function Returning Values), Scope of the Variables in a Function - Global and Local Variables.

Unit-4:MODULES, PYTHON PACKAGES, LIBRARIES14 HOURS

Modules: Creating modules, import statement, from.

Math Module: Constants, Power and logarithmic functions, Trigonometric functions, Angular conversion, Hyperbolic functions.

Python package: Introduction to PIP, Installing Packages via PIP, Using Python Packages.

Popular libraries: Introduction and applications of popular libraries: Scipy, Numpy, Sympy, Matplotlib, and Pandas

Numpy Library: Numpy import, Basic functions, Matrices Addition, Subtraction, Multiplication, Transpose, Inverse, Eigen values and Eigenvectors using Numpy.

Unit-5:DATA VISUALIZATION

13 HOURS

Matplotlib: Loading the library and importing the data, How Mat plot lib works, different types of plots: line plots, Scatter plots, Bar plots, contour plot modifying the appearance of a plot,

13 HOURS

plotting multiple plots, Modifying the tick marks, axes labelling. **Scipy**: Interpolation and Numerical Integrations Using Scipy

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand basic operations in Python {Understand level, KL2}
CO2	Apply use if-else statements and switch-case statements to write programs in Python to
	tackle any decision-making scenario {Apply, KL3}
CO3	Perform, Store and retrieve information using Data structures {analyse, KL4}
CO4	Understand Use of python libraries for problem solving. {Understand level, KL2}
CO5	Create graphical form representation for computed data. {Create, KL6}

Text books:

- 1. Python for civil and structural engineers by Vittorio Lora.
- 2. Scientific Computing In Python By Abhijit Kar Gupta. TECHNO WORLD PUB

Reference books:

- 1. Python Programming: A Modern Approach, Vamsi Kurama, Pearson
- 2. Numerical Python: Scientific Computing and Data Science Applications by Robert Johansson.
- 3. Let Us Python by Yashavant Kanetka

Micro-Syllabus of Scientific Computing Using Python

Unit-I: INTRODUCTION AND DATA TYPES

Introduction: History of Python, Need of Python Programming, Applications of python, Running Python Scripts, Variables, Assignment, Keywords and Identifiers, Input-Output, Indentation.

Data Types:Integers, Floats, Complex Numbers, Strings, Booleans; Type Conversion.

Unit	Module	Micro content
		History of Python
	Introduction	Need of Python Programming
	Introduction	Applications of python
		Running Python Scripts using Jupyter Notebook
Ia. Introduction to		and Spyder.
Python	Variables and literals	Variables
		Assignment, list of Keywords and Identifiers,
		Naming rules
		Input-Output (print, input),
		Indentation.
		Integers, Floats, Complex Numbers, Strings,
Ih Data Tumas	python data types	Booleans
10. Data Types		Finding of variable type
		Type Conversion

Unit-II: OPERATORS AND CONTROL FLOW

Operators: Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators, Identity Operators, Expressions and order of evaluations

Control Flow: Boolean Expression, if, if-else, for, while, break, continue, pass.

Unit	Module	Micro content		
		Arithmetic Operators		
		Comparison (Relational) Operators		
	Ononatora	Assignment Operators		
IIa. Operator	Operators	Logical Operators		
		Membership Operators		
		Identity Operators		
		Expressions and order of evaluations.		
		if, if-elif-else,		
		For,		
IIb. Control Flow		While,		
IID. CONTROL Flow		Break,		
		Continue,		
		Pass		

Unit-III: DATA STRUCTURES AND FUNCTIONS

Data Structures: Lists - Operations, Slicing, Methods; Tuples, Sets, Dictionaries, Sequences and Comprehensions.

Functions: Defining Functions, Calling Functions, Passing Arguments, Keyword Arguments, Default Arguments, Variable-length arguments, Recursive and Anonymous Functions, Fruitful Functions (Function Returning Values), Scope of the Variables in a Function - Global and Local Variables.

Unit	Module	Micro content
		Lists - Operations, Slicing,
IIIa Data		tuples
IIIa.Dala Structuros	Data Structures	sets
Structures		Dictionaries
		Sequences and list comprehensions
		Defining Functions, Calling Functions, Passing
	Functions	Arguments
		Keyword Arguments, Default Arguments,
IIIh Eurotions		arbitrary arguments
IIID. FUNCTIONS		Recursive and Anonymous Functions
		Fruitful Functions (Function Returning Values),
		Scope of the Variables in a Function - Global and
		Local Variables.

Unit-IV: MODULES, PYTHON PACKAGES, LIBRARIES

Modules: Creating modules, import statement, from.

Math Module: Constants, Power and logarithmic functions, Trigonometric functions, Angular conversion, Hyperbolic functions.

Python package: Introduction to PIP, Installing Packages via PIP, Using Python Packages. Popular libraries: Introduction and applications of popular libraries: Scipy, Numpy, Sympy, Matplotlib, and Pandas

Numpy Library:	Numpy import, Ba	sic functions, Matrices Addition, Subtraction,				
Multiplication, Transpose, Inverse, Eigen values and Eigenvectors using Numpy.						
Unit	Module	Micro content				
		Creating modules, import statement, from				
	Modulas	Math Module: Constants, Power and logarithmic				
	Modules	functions, Trigonometric functions, Angular				
		conversion, Hyperbolic functions.				
IVa/ IVb.	Duthon noolroop	Introduction to PIP, Installing Packages via PIP,				
Modulues, Python,	Python package	Using Python Packages.				
Packages, Libraries	Popular libraries	Introduction and applications of popular libraries:				
		Scipy, Numpy, Sympy, Matplotlib, and Pandas				
		Numpy import, Basic functions,				
	Name and Library	Matrices Addition, Subtraction, Multiplication,				
	Numpy Library	Transpose, Inverse				
		, Eigen values and Eigenvectors using Numpy				
Unit-V: DATA VISUALIZATION						

Matplotlib: Loading the library and importing the data, How Mat plot lib works, different types of plots: line plots, Scatter plots, Bar plots, contour plot modifying the appearance of a plot, plotting multiple plots, Modifying the tick marks, axes labelling.

Scipy: Interpolation and Numerical Integrations Using Scipy

Unit	Module	Micro content		
Va/Vb.Data Visualization	Matplotlib	Loading the library and importing the data, How Mat plot lib works different types of plots: line plots, Scatter plots, Bar plots, contour plot modifying the appearance of a plot, plotting multiple plots, Modifying the tick marks, axes labeling.		
	Scipy	Interpolation and Numerical Integrations Using Scipy		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1							1
CO2	3	3	3	3	1							
CO3	2	3	2									
CO4	2	3	1	1	3						1	2
CO5	3	3	2	1	2					2		1

TRANSPORTATION ENGINEERING

L	Т	Р	С
3	0	0	3

Course objectives:

II-Year-II Semester

PC2202

The student should be able to

- 1. To impart knowledge on history of road development in India, Highway alignment and design of road geometric elements
- 2. To learn various traffic surveys and their use in designing various road elements
- 3. To describe tests related to quality of materials and learn various highway construction and maintenance procedures.
- 4. To acquire design principles of Highway Geometrics and Pavements
- 5. To know various components and their functions in a railway track and to acquire design principles of geometrics in a railway track

Unit–1: 13 HOURS

Highway Development and Planning: Highway development in India, Highway planning, Different road development plans, Classification of roads, Road network patterns, Highway alignment – Factors affecting

Highway Geometric Design: Importance of geometric design, Highway cross sectional elements, Sight distance elements, Design of horizontal Alignment - Design of super elevation and extra widening; Design of transition curves, Design of vertical alignment, Gradients, Vertical curves.

Unit–2:14 HOURS

Traffic Engineering: Basic Parameters of Traffic-Volume, Speed and Density- Traffic Volume Studies; Speed studies –spot speed and speed & delay studies; Parking Studies; Road Accidents-Causes and Preventive measures - Condition Diagram and Collision Diagrams; PCU Factors, Capacity of Highways – Factors Affecting; LOS Concepts; Road Traffic Signs; Road markings; Types of Intersections; At-Grade Intersections – Design of Plain, Flared, Rotary and Channelized Intersections; Design of Traffic Signals –Webster Method –IRC Method

Unit–3: 14 HOURS

Highway Materials: Subgrade soil: classification –Group Index – Subgrade soil strength – California Bearing Ratio – Modulus of Subgrade Reaction. Stone aggregates: Desirable properties – Tests for Road Aggregates – Bituminous Materials: Types – Desirable properties – Tests on Bitumen – Bituminous paving mixes: Requirements – Marshall Method of Mix Design.

Highway Construction And Maintenance: Types of Highway Construction – Earthwork; Construction of Earth Roads, Gravel Roads, Water Bound Macadam Roads, Bituminous Pavements and Construction of Cement Concrete Pavements. Pavement Failures, Maintenance of Highways, pavement evaluation

Unit-4:

12 HOURS

Pavement Design : Pavements – Types, Functions and components; Design factors, Flexible pavement design methods, Rigid Pavements: Design Considerations – wheel load stresses – Temperature stresses – Frictional stresses – Combination of stresses – Design of slabs – Design of Joints – IRC method

Unit-5:12 HOURS

Introduction To Railway Engineering: Permanent way – Components and their functions – Rail Fastenings – Creep of Rails- Theories related to creep – Adzing of Sleepers- Sleeper density

– Rail joints

Track Geometric Design – Alignment – Engineering Surveys - Gradients- Cant and Negative Super elevation- Cant Deficiency – Degree of Curve – safe speed on curves – Transition curve – Compound curves – Reverse curves – Extra clearance on curves – widening of gauge on curves – vertical curves

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Plan highway network for a given area and design highway geometrics (Understand &
	Apply)
CO2	Design Intersections and prepare traffic management plans (Understand, Apply &
	Create)
CO3	Judge the suitability of pavement materials in road construction and able to construct and
	maintainhighways (Understand & Evaluate)
CO4	Design flexible and rigid pavements (Create)
CO5	Plan, design and maintain railway track and its elements (Understand & Create)

Text books:

- 1. Highway Engineering, Khanna S. K., Justo C. E. G and Veeraragavan A, Nem Chand Bros., Roorkee
- 2. Traffic Engineering and Transportation Planning, Kadiyali L. R, Khanna Publishers, New Delhi
- 3. Railway Engineering, Satish Chandra and Agarwal M. M., Oxford University Press, New Delhi

Reference books:

- 1. Principles of Highway Engineering, Kadiyali L. R, Khanna Publishers, New Delhi Railway Engineering, Saxena & Arora Dhanpat Rai, New Delhi.
- 2. Highway, Railway, Airport and Harbor Engineering, Subramanian K. P. Scitech Publications (India) Pvt Limited, Chennai

Micro Syllabus of Transportation Engineering

Unit-1: Highway Development and Planning: Highway development in India, Highway planning, Different road development plans, Classification of roads, Road network patterns, Highway alignment – Factors affecting

Highway Geometric Design: Importance of geometric design, Highway cross sectional elements, Sight distance elements, Design of horizontal Alignment - Design of super elevation and extra widening; Design of transition curves, Design of vertical alignment, Gradients, Vertical curves.

Unit	Module	Micro content
		Highway development in India, Jayakar Committee
1. Highway	Highway development	Recommendations, Central Road Fund, Indian Road
Development and	in India, Highway	congress
Planning &	planning, Different	
Highway	road development	
Geometric Design	plans	
C		Highway planning

		Different road development plans (Three twenty year road development plans)
	Classification of roads, Road network patterns, Highway alignment – Factors affecting	Classification of roads Road network patterns (Rectangular, Star and Block, star and circular, star and grid, hexagonal, minimum travel pattern)
		Factors affecting highway alignment
	Importance of geometric design, Highway cross sectional elements, Sight distance elements	Importance of geometric design
		Highway cross sectional elements
		Sight distance elements (SSD, OSD) Theory and simple problems
	Design of horizontal Alignment - Design of super elevation and extra widening; Design of transition curves	Design of horizontal Alignment (Design speed, horizontal curves)
		Design of super elevation (Derivation and Simple Problems)
		Design of extra widening (Mechanical and Psychological widening) Derivation and problems
		Design of transition curves (Spiral, lemniscate, Cubic parabola)
	Design of vertical alignment, Gradients, Vertical curves	Design of vertical alignment (Gradients: Ruling, Limiting, Exceptional, Minimum)
		Design of vertical curves (Summit curves, valley curves)

Unit-2: Traffic Engineering: Basic Parameters of Traffic-Volume, Speed and Density- Traffic Volume Studies; Speed studies –spot speed and speed & delay studies; Parking Studies; Road Accidents-Causes and Preventive measures - Condition Diagram and Collision Diagrams; PCU Factors, Capacity of Highways – Factors Affecting; LOS Concepts; Road Traffic Signs; Road markings; Types of Intersections; At-Grade Intersections – Design of Plain, Flared, Rotary and Channelized Intersections; Design of Traffic Signals –Webster Method –IRC Method

Unit	Module	Micro content
2. Traffic Engineering	Basic Parameters of Traffic-Volume, Speed and Density- Traffic Volume Studies	Basic Parameters of Traffic
		Volume, Speed and Density
		Traffic Volume Studies

Speed studies and speed & studies; Park	Speed studies -spot speed	Speed studies
	and speed & delay studies; Parking Studies	Spot speed, speed & delay studies
		Parking Studies
	Road Accidents-Causes and Preventive measures - Condition Diagram and Collision Diagrams; PCU Factors	Road Accidents-Causes and Preventive measures
		Condition Diagram and Collision Diagrams
		PCU Factors
	Capacity of Highways – Factors Affecting; LOS Concepts; Road Traffic Signs; Road markings	Factors Affecting capacity of Highways
Factors Concep Signs; F Types o At-Grac Design Rotary a Intersec Design –Webst Method		LOS Concepts
		Road Traffic Signs
		Road markings
	Types of Intersections; At-Grade Intersections – Design of Plain, Flared, Rotary and Channelized Intersections	Types of Intersections; At-Grade Intersections
		Design of Plain, Flared, Rotary and Channelized Intersections
	Design of Traffic Signals	Design of Traffic Signals
	-Webster Method -IRC	Webster Method
	Method	IRC Method

Unit-3: Highway Materials: Subgrade soil: classification –Group Index – Subgrade soil strength – California Bearing Ratio – Modulus of Subgrade Reaction. Stone aggregates: Desirable properties – Tests for Road Aggregates – Bituminous Materials: Types – Desirable properties – Tests on Bitumen – Bituminous paving mixes: Requirements – Marshall Method of Mix Design. **Highway Construction And Maintenance:** Types of Highway Construction – Earthwork; Construction of Earth Roads, Gravel Roads, Water Bound Macadam Roads, Bituminous Pavements and Construction of Cement Concrete Pavements. Pavement Failures, Maintenance of Highways, pavement evaluation

Unit	Module	Micro content
3. Highway Materials & Highway Construction And Maintenance Road	Subgrade soil: classification –Group Index – Subgrade soil strength – California Bearing Ratio	Subgrade soil: classification (based on grain size) -Group Index (Definition, Problems)
		Subgrade soil strength – California Bearing Ratio, Plate load test
	Modulus of Subgrade Reaction. Stone aggregates: Desirable properties – Tests for Road Aggregates	Modulus of Subgrade Reaction (Definition)
		Stone aggregates: Desirable properties (Strength, Hardness, Toughness, Durability, Shape of aggregates, Adhesion with bitumen)
		Tests for Road Aggregates (Crushing, Abrasion, Impact, Soundness, Shape, Specific gravity and water absorption test, Bitumen adhesion test)

		Bituminous Materials: Types – Desirable
	Bituminous Materials:	properties
	Types – Desirable	Tests on Bitumen (Penetration, Ductility,
	properties – Tests on	Viscosity, Softening Point, Flash and fire point
	Bitumen – Bituminous paving mixes: Requirements – Marshall Method of Mix Design	test)
		Bituminous paving mixes: Requirements
		Marshall Method of Mix Design (Theory)
	Types of Highway Construction – Earthwork; Construction	Types of Highway Construction – Earthwork
of Earth Roads, Gravel Roads, Water Bound <u>Macadam Roads</u> Bituminous Pavements and Construction of Cement Concrete Pavements. Pavement Failures, Maintenance of Highways, pavement evaluation	Construction of Earth Roads, Gravel Roads, Water Bound Macadam Roads	
	Bituminous Pavements and Construction of Cement Concrete Pavements	
	Pavement Failures (Flexible pavement and Rigid pavement failures)	
	evaluation	Maintenance of Highways, pavement evaluation

Unit-4: Pavement Design : Pavements – Types, Functions and components; Design factors, Flexible pavement design methods, Rigid Pavements: Design Considerations – wheel load stresses – Temperature stresses – Frictional stresses – Combination of stresses – Design of slabs – Design of Joints – IRC method

Unit	Module	Micro content
4. Pavement Design	Pavements – Types, Functions and components; Design factors, Flexible pavement design methods	Pavements – Types, Functions and components
		Design factors
		Flexible pavement design methods(CBR Method,
		IRC Method)
	Rigid Pavements: Design Considerations – wheel load stresses – Temperature stresses – Frictional stresses – Combination of stresses – Design of slabs – Design	Rigid Pavements: Design Considerations
		Wheel load stresses – Temperature stresses –
		Frictional stresses
		Combination of stresses
		Design of slabs – Design of Joints

Unit-5:Introduction To Railway Engineering: Permanent way – Components and their functions – Rail Fastenings – Creep of Rails- Theories related to creep – Adzing of Sleepers- Sleeper density – Rail joints

Track Geometric Design – Alignment – Engineering Surveys - Gradients- Cant and Negative Super elevation- Cant Deficiency – Degree of Curve – safe speed on curves – Transition curve – Compound curves – Reverse curves – Extra clearance on curves – widening of gauge on curves – vertical curves

Unit	Module	Micro content										
	Permanent way – Components and their functions – Rail Fastenings – Creep of	Permanent way definition, Ideal requirements of										
		permanent way, Components (Rails, Sleepers,										
		Ballast) and their functions										
		Rail Fastenings – Creep of Rails										
		Theories related to creep (Wave theory,										
	$reen = \Delta dzing of$	Percussion Theory, Drag Theory) – Adzing of										
	Sleepers- Sleeper density – Rail joints	Sleepers										
		Sleeper density, Problems on sleeper density, Rail										
		joints										
5. Introduction												
To Railway Engineering & Track Geometric	Alignment – Engineering Surveys - Gradients- Cant and Negative Super elevation- Cant Deficiency – Degree of Curve	Alignment – Engineering Surveys - Gradients										
		Cant and Negative Super elevation, associated										
		problems										
~ •>-8		Cant Deficiency, Degree of Curve, Relation										
		between degree and radius of curve										
	Safe speed on curves – Transition curve – Compound curves – Reverse curves	Safe speed on curves, Problems on maximum										
		permissible speed on curves										
		Transition curve – Compound curves – Reverse										
		curves										
	Extra clearance on curves – widening of gauge on curves – vertical curves	Extra clearance on curves										
		Widening of gauge on curves										
		Vertical curves										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
-----	-----	-----	-----	-----	-----	-----	------------	-----	-----	------	------	------
CO1	2	2		2								
CO2	2		2		2							
CO3	2			3								
CO4	2	3										
CO5	2	2	2									

CO-PO Mapping

II-Year-II Semester PC2203

STRUCTURAL ANALYSIS

L	, '	T	P	С
3		0	0	3

Pre-Requisites: Strength of Materials

Course objectives:

1. Familiarize student with statically determinate and indeterminate structures

- 2. To analyze fixed beams and propped cantilever beams
- 3. Enable students to analyze beams and frames by application of slope and deflection methods

4. Equip student with quick and approximate analysis of building frames for gravity and lateral Loads

5. Enable students to determine deflections of beams, frames and trusses by application of Energy Methods.

- 6. To analyze the variation of force in beams & trusses and draw influence line diagram
- 7. Introduce basic concepts of matrix analysis

Unit–1: 14 HOURS

Introduction: Structure, Load, Response, Static indeterminacy and structural integrity (stable / unstable) of beams - trusses - frames, Limitations of formulas – effect of support reactions and improper constraints, Kinematic indeterminacy, Internal forces in statically determinate simple beams, cantilever and simply supported frames

Analysis of Propped Cantilever and Fixed Beams: Analysis of Propped Cantilever beams – SFD, BMD and deflection (Elastic curve), Analysis of Fixed beams – SFD, BMD and deflection (Elastic curve)

Unit-2:12 HOURS

Slope-Deflection Method: Introduction, derivation of slope deflection equation, application to continuous beams with and without settlement of supports - SFD and BMD.

Moment Distribution Method: Member flexural stiffness, Carry over factor, Distribution factor, Application to continuous beams with and without settlement of supports. Analysis of Single bay single storey portal frames without sway and with sway – SFD and BMD.

Unit-3: 13 HOURS

Gravity Load Analysis Using Approximate Methods: Analysis of continuous beams and portal frames using Inflection Points, Analysis of building frames using Substitute Frame Method **Lateral Load Analysis Using Approximate Methods**: Application to building frames. (i) Portal Method (ii) Cantilever Method.

Unit-4:14 HOURS

Deflections using Energy Methods: Introduction-Strain energy in linear elastic system, expression of strainenergy due to axial load - bending moment - shear forces, Application of Castigliano's theorems-Deflections of statically determinate trusses and frames.

Influence Lines: Influence lines for simply supported beams -Definition of influence line for SF, Influence line for BM- load position for maximum SF at a section-Load position for maximum BM at a sections, single point load, U.D. load longer than the span, U.D. load shorter than the span- Influence lines for forces in members of Pratt and Warren trusses.

Unit-5:Introduction to Matrix Methods (System Approach):

12 HOURS

Flexibility method: Introduction, application to continuous beams (maximum of two unknowns) including support settlements.

Stiffness method: Introduction, application to continuous beams (maximum of two unknowns) including support settlements.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Distinguish between statically determinate and indeterminate structures
CO2	Analyze fixed beam and propped cantilever beam
CO3	Analyze continuous beam and frames by application of slope-deflection and moment distribution methods.
	Apply approximate methods and determine the structural response of building frames subjected to gravity loads and lateral loads respectively
CO4	To find deflections in simple structures by application of energy method and plot the
	influence diagram for variation of force quantity in beams and trusses
CO5	Carry out matrix analysis of continuous beams

Text books:

1. C.S. Reddy, Basic Structural Analysis, Tata McGraw-Hill

2. R. C. Hibbeler, Structural Analysis, Pearson Education

3. K. U. Muthu et al., Structural Analysis – Vol I & II, IK International

Reference books:

- 1. Devdas Menon, Structural Analysis, Narosa Publishers
- 2. T. S. Thandavamoorthy, Structural Analysis, OUP, India
- 3. S. S. Bhavikatti, Structural Analysis Vol I & II, Vikas Publications
- 4. V. N. Vazirani , M. M. Ratwani and S. K. Duggal, Analysis of Structures- Vol. I and II, Khanna Publishers, NewDelhi
- 5.G. S. Pandit and Gupta, Matrix Analysis of Structures, Tata McGraw-Hill
- 6. Structural Analysis I and II, IIT Kharagpur, NPTEL web course material

Micro-Syllabus

UNIT – I

I Introduction: Structure, Load, Response, Static indeterminacy and structural integrity (stable / unstable) of beams - trusses - frames, Limitations of formulas – effect of support reactions and improper constraints, Kinematic indeterminacy, Internal forces in statically determinate cantilever and simply supported frames

Analysis of Propped Cantilever and Fixed Beams: Analysis of Propped Cantilever beams – SFD, BMD and deflection (Elastic curve), Analysis of Fixed beams – SFD, BMD and deflection (Elastic curve)

Unit	Module	Micro content
Ia. Introduction	Introduction	Structure, Load, Response, Static indeterminacy and structural integrity (stable / unstable) of beams - trusses - frames, Limitations of formulas

		 effect of support reactions and improper constraints 				
		Kinematic indeterminacy – beams, trusses and frames				
	Internal forces in statically determinate frames (Reference : 8.3 and 8.4 of Structural Analysis by Devdas Menon)	cantilever and simply supported frames subjected to simple loading (Udl / Concentrated loads)				
Ib. Analysis of Propped Cantilever and Fixed Beams	Propped Cantilever Beams	Analysis of propped cantilever beams subjected to Simple Loading – Udl, Concentrated Load, Concentrated Moment – SFD & BMD, deflection –elastic curve				
	Fixed Beams	Analysis of fixed beams subjected to Simple Loading – Udl, Concentrated Load, Concentrated Moment, Rotational slip at Support – SFD & BMD, deflection –elastic curve				
UNIT – II Slope-Defl	ection Method: Introdu	ction, derivation of slope deflection equation,				
Moment Distribution	n Method: Member f	lexural stiffness, Carry over factor. Distribution				
factor, Application to continuous beams with and without settlement of supports. Analysis of						
Single bay single storey portal frames without sway and with sway – SFD and BMD.						
Unit	Module	Micro content				
IIa. Slope – Deflection Method	Introduction	Assumptions, Sign convention, Derivation and procedure				

	Analysis of Continuous beams	Analysis of Continuous Beams without / with support settlements - subjected to simple loading (Udl, Concentrated Load, Concentrated Moment, Triangular load on different spans, Different EI) and Far ends hinged / fixed / overhang – BMD and SFD				
	Introduction	Kinematic indeterminacy, Member flexural stiffness, Carry over factor, Distribution factor, Analysis procedure				
IIb. Moment Distribution Method	Analysis of Continuous Beams	Analysis of Continuous Beams without / with support settlements - subjected to simple loading (Udl, Concentrated Load, Concentrated Moment, Triangular load on different spans, Different EI) and Far ends hinged / fixed / overhang – BMD and SFD				
	Analysis of Frames without Sway	Single – Storey and Single-Bay Portal Frames subjected to Simple Loading				
	Analysis of Sway Frames	Single – Storey and Single-Bay Portal Frames subjected to Simple Loading				
UNIT – III UNIT – III Gravity Load Analysis Using Approximate Methods: Analysis of continuous beams and portal frames using Inflection Points, Analysis of building frames using Substitute Frame Method Lateral Load Analysis Using Approximate Methods: Application to building frames. (i) Portal Method (ii) Cantilever Method						
	Analysis by	Analysis of three-span continuous beam (No support settlement and Constant EI) subjected to UDL and / point loads				
III a. Gravity Load Analysis	assumption of Inflection points	Analysis of Single / TwoBay- Two Storey portal frame (Constant EI and Fixed Bases) subjected to constant UDL on beams				
	Substitute Frame Method	Analysis at particular floor level of Three Bay – Two Storey portal frame (Fixed Bases) subjected to UDL (DL & LL) on beams for maximum and minimum bending moments				

III b. Lateral Load Analysis	Portal Method	Analysis of Two Bay – Two Storey Portal Frame with Fixed Bases				
	Cantilever Method	Analysis of Two Bay – Two Storey Portal Frame with Fixed Bases				
UNIT – IV Deflections using Energy Methods: Introduction-Strain energy in linear elastic system, expression of strain energy due to axial load - bending moment - shear forces: Application of Castigliano's theorems-Deflections of statically determinate trusses and frames. Influence Lines: Influence lines for simply supported beams -Definition of influence line for SH Influence line for BM- load position for maximum SF at a section-Load position for maximum BM at a sections, single point load, Two point loads, U.D. load longer than the span, U.D. load shorter than the span- Influence lines for forces in members of Pratt and Warren trusses						
Wa Deflections	Introduction	Introduction-Strain energy in linear elastic system, expression of strain energy due to axial load - bending moment - shear forces				
using Energy Method	Analysis of Trusses	Analysis of statically determinate Trusses subjected to Simple Loading				
	Analysis of Frames	Analysis of statically determinate Bent / Cantilever Frames subjected to simple loading				
	Introduction	Influence lines for simply supported beams Definition of influence line for SF, Influence line for BM- load position for maximum SF at a section-Load position for maximum BM at a sections				
Lines	Application to Beams	Simply supported beams (constant EI) subjected to single point load, Two point loads (spacing less than span of beam), U.D. load longer than the span, U.D. load shorter than the span				
UNIT - V Introducti	Application to Trusses	Analysis of Warren and Pratt Trusses				

Flexibility method: Introduction, application to continuous beams (maximum of two unknowns) including support settlements.

Stiffness method: Introduction, application to continuous beams (maximum of two unknowns) including support settlements.

Vb. Flexibility Method (System Approach)	Analysis of Continuous Beams	Analysis of continuous beams (with maximum two unknowns) without and with support settlements subjected to simple loading (Udl / concentrated loads – No combination)
--	---------------------------------	--

CO – PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3								2		
CO2	1	3								2		
CO3	2	3										
CO4	1	3								2		
CO5	2	3										

II-Year-II Semester PC2204

HYDRAULICS AND HYDRAULIC MACHINERY

L	Т	Р	С
3	0	0	3

Pre-Requisites: Fluid Mechanics

Course objectives:

The student should be able to

- 1. To understand the fundamental concepts of open channel uniform flow and Non-uniform flow conditions.
- 2. To study the concept of boundary layer control and its practical applications.
- 3. To understand the need of relationship between model and prototype and able to predict the prototype behavior based on the field conditions
- 4. To predict the influence of hydrodynamic forces acting on vanes at different conditions.
- 5. To understand the working mechanism and performance characteristics of a turbine.
- 6. To understand the working mechanism and performance characteristics of a pump.

Unit-1: FLOW IN OPEN CHANNELS

Uniform Flow in Open Channels: Types of channels – Types of flows – Velocity and pressure distribution – Chezy's, and Manning's formulae for uniform flow – Most Economical sections, Critical flow: Specific energy-critical depth – computation of critical depth.

Non-Uniform Flow in Open Channels: Steady Gradually Varied flow-Dynamic equation, Mild, Critical, Steep, horizontal and adverse slopes-surface profiles-direct step method- Rapidly varied flow, hydraulic jump, energy dissipation.

Unit-2:BOUNDARY LAYER THEORY12 HOURS

Boundary layer (BL) – concepts, Characteristics of boundary layer along a thin flat plate - laminar and turbulent Boundary layer, separation of BL, Control of BL, flow around submerged Objects-Drag and Lift- Magnus effect.

Unit-3: HYDRAULIC SIMILITUDE12 HOURS

Dimensional Analysis-Rayleigh's method and Buckingham's pi theorem-study of Hydraulic models – Geometric, kinematic and dynamic similarities-dimensionless numbers – model and prototype relations.

Unit-4:HYDRAULIC TURBINES

Basics of Turbo Machinery: Hydrodynamic force of jets on stationary and moving flat, inclined and curved vanes, jet striking centrally and at tip, velocity triangles at inlet and outlet, expressions for work done and efficiency - Angular momentum principle.

Hydraulic Turbines: Classification of turbines. Pelton wheel - Francis turbine – Kaplan turbine - working, velocity diagram, work done and efficiency, hydraulic design, draft tube – theory and efficiency. Units and specific quantities, performance characteristics curves of the turbine.

Unit–5:PUMPS

Centrifugal Pumps:Classification, different heads and efficiencies, work done - Manometric head-minimum starting speed of the pump-specific speed, performance characteristics curves of pumps.

Reciprocating Pumps: Classification, working principle, work done, indicator diagram and slip

14 HOURS

13 HOURS

14 HOURS

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Able to Design of an economical open channel section and estimate the energy profile of
	the flow in the channel.
CO2	Able to apply concept of boundary layer in operation and design of moving vehicles
CO3	Able to establish relationship among the variables in any natural phenomena and predict
	design parameters of the prototype using similitude.
CO4	Able to predict the type of material, size and shape of vanes using the analysis of impact
	of jet.
CO5	Able to configure various components of turbines, pumps and their installation.

Text books:

- 1. Open Channel flow, K. Subramanya, Tata McGraw Hill Publishers
- 2. A text of Fluid mechanics and hydraulic machines, Rajput
- 3. Fluid Mechanics, P. N. Modi and S. M. Seth, Standard book house, New Delhi

Reference books:

- 1. Fluid Flow in Pipes and Channels, G.L. Asawa, CBS
- 2. Fluid Mechanics and Machinery, C.S.P. Ojha, R. Berndtsson and P.N. Chandramouli, Oxford Higher Education.
- 3. A text of Fluid mechanics and hydraulic machines, R. K. Bansal Laxmi Publications (P) ltd., New Delhi Digital Design by Mano, PHI
- 4. Mechanics of Fluids, Merle C. Potter, David C. Wiggert and Bassem H. Ramadan, CENGAGE Learning.

Micro-Syllabus of Hydraulics and Hydraulic Machinery

Unit-I: FLOW IN OPEN CHANNELS

Uniform Flow in Open Channels: Types of channels – Types of flows – Velocity and pressure distribution – Chezy's, and Manning's formulae for uniform flow – Most Economical sections, Critical flow: Specific energy-critical depth – computation of critical depth.

Non-Uniform Flow in Open Channels: Steady Gradually Varied flow-Dynamic equation, Mild, Critical, Steep, horizontal and adverse slopes-surface profiles-direct step method- Rapidly varied flow, hydraulic jump, energy dissipation.

Unit	Module	Micro content		
Ia. Uniform Flow in Open Channels	Uniform Flow in Open Channels	Velocity and pressure distribution in various channels Most Economical channel sections – Rectangular Channel section, Circular Channel Section and Trapezoidal channel section Specific Energy Diagram – Critical depth, critical velocity & critical discharge – numerical problems on critical depth in rectangular		
		channel.		
Ib. Non-Uniform	Non-Uniform Flow	Difference between Gradually varied flow and		
Flow in Open	in Open Channels	rapid varied flow		

Channels	Dynamic equation for gradually varied flow
	Various type of flow profiles
	Direct step method – rectangular channel
	Hydraulic Jump – Typical features
	The relationship between initial depth and final
	depth

Unit-II: BOUNDARY LAYER THEORY

Boundary layer (BL) – concepts, Characteristics of boundary layer along a thin flat plate - laminar and turbulent Boundary layer, separation of BL, Control of BL, flow around submerged Objects-Drag and Lift- Magnus effect.

Unit	Module	Micro content		
IIa/IIb. Boundary Layer Theory Theory		Formation of Boundary layer		
		Characteristics of Boundary along the thin flat		
		plate		
	Boundary Layer Theory	Mechanism of Separation of Boundary layer		
		Control measures for separation of boundary		
		layer		
		Drag - Lift – Types – Empirical formulae		
		Flow around the cylindrical object		
		Magnus effect		

Unit-III: HYDRAULIC SIMILITUDE

Dimensional Analysis-Rayleigh's method and Buckingham's pi theorem-study of Hydraulic models – Geometric, kinematic and dynamic similarities-dimensionless numbers – model and prototype relations.

Unit	Module	Micro content
		Dimensional analysis using Rayligh's and
IIIa/IIIb. Hydraulic Similitude	Hydraulic Similitude	Buckingham method
		Different types of hydraulic models
		Dimensionless numbers
		Relationship between varies variables of model
		and prototypes

Unit-IV: HYDRAULIC TURBINES

Basics of Turbo Machinery: Hydrodynamic force of jets on stationary and moving flat, inclined and curved vanes, jet striking centrally and at tip, velocity triangles at inlet and outlet, expressions for work done and efficiency - Angular momentum principle.

Hydraulic Turbines: Classification of turbines. Pelton wheel - Francis turbine – Kaplan turbine - working, velocity diagram, work done and efficiency, hydraulic design, draft tube – theory and efficiency. Unit and specific quantities, performance characteristics curves of the turbine.

Unit	Module	Micro content		
IVa. Basics of Turbo Machinery	Basics of Turbo	Impact of jet on stationary, moving and inclined curved vanes – velocity triangles		
·	Machinery	Angular momentum principle		
IVa. Hydraulic		Difference between Pelton and Francis Turbine		
Turbines	Hydraulic Turbines	Working principle, velocity triangle and work		
		done		

Different types of efficiencies
Draft tube – functional significance of draft tube
Relationship between the unit variables
Performance characteristics curves of the
turbines

Unit-V: PUMPS

Centrifugal Pumps:Classification, different heads and efficiencies, work done - Manometric head-minimum starting speed of the pump-specific speed, performance characteristics curves of pumps.

Reciprocating Pumps: Classification, working principle, work done, indicator diagram and slip.Shear Centre: Introduction - Shear centre for symmetrical and unsymmetrical sections- Basic concepts.

Unit	Module	Micro content		
		Working principle and efficiencies of centrifugal		
		pump		
		Minimum starting speed of the pump		
Va/Vb.Pumps Pumps		Specific speed – empirical formula and its		
		significance		
	Pumps	Performance characteristics curves of the pumps		
		Difference between reciprocating pump and		
		centrifugal pump		
		Working principle and work done of		
		reciprocating pump		
		Slip and its practical significance		

CO – PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1			1	1		1
CO2	3	3	2	2	2	1			1	1		1
CO3	3	3	2	2	2	1			1	1		1
CO4	3	3	2	2	2	1			1	1		1
CO5	3	3	2	2	2	1			1	1		1

ENVIRONMENTAL ENGINEERING

L	Τ	Р	С
3	0	0	3

Pre-

PC2205

Requisites:Chemistry,EnvironmentalScience,FluidMechanics,Hydraulics&HydraulicMachiner

Course objectives:

II-Year-II Semester

The course deals with concepts of water demand and water quality parameters, design of water treatment units, sewage quality parameters, sewage treatment units, sludge handling insewage treatment.

Unit–1: WATERDEMANDS-STANDARDS-SOURCES: 13 HOURS
Aspects of Environmental Engineering - Protected water supply - Need - Water demands -
Fluctuations - Design period-Population forecast - Water quality - Drinking water standards-
Testing and significance - Quality and Quantity and other considerations of surface and sub-
surface sources - Yield calculations - Intake works - Storage reservoir capacity - Systems
ofwatersupply-Requirements-Detectionofleakages-Selectionofpump-
Economicaldiameterofpumpingmain.
Unit-2:TREATMENTOFWATERANDDISTRIBUTION: 13 HOURS
Water treatment, conventional treatment flow diagram-Sedimentation types-Principles-Design term of the sedimentation of the sedimenta
factors- Coagulation -DesignofClariflocculator -Filtration-
Slow, Rapidgravity filters and Pressure filters – Design principles - Disinfection –
TheoryofChlorination-Distribution systems- Layouts - Design- and analysis, Hardy Cross
method and Equivalent Pipemethod. Valves-Otherappurtenances.
Unit–3: WASTEWATERMANAGEMENT: 13 HOURS
Introduction:Wastewatertreatmentsystem–Definitionsofterms–
Collectionandconveyanceofsewage–Sewageflowrates–Stormwater–Characteristicsofsewage–
Collectionandconveyanceofsewage–Sewageflowrates–Stormwater–Characteristicsofsewage– Cyclesofdecay–BOD–COD–Ultimatedisposalofsewage–self-purificationofrivers–sewage farming
Collectionandconveyanceofsewage–Sewageflowrates–Stormwater–Characteristicsofsewage– Cyclesofdecay–BOD–COD–Ultimatedisposalofsewage–self-purificationofrivers–sewage farming Unit–4:DESIGNOFSEWERSANDPRIMARYTREATMENT: 13 HOURS
Collectionandconveyanceofsewage–Sewageflowrates–Stormwater–Characteristicsofsewage– Cyclesofdecay–BOD–COD–Ultimatedisposalofsewage–self-purificationofrivers–sewage farming Unit–4:DESIGNOFSEWERSANDPRIMARYTREATMENT: 13 HOURS Layouts – Design of sewers – Sewers appurtenances – Sewage pumping -Conventional
Collectionandconveyanceofsewage–Sewageflowrates–Stormwater–Characteristicsofsewage– Cyclesofdecay–BOD–COD–Ultimatedisposalofsewage–self-purificationofrivers–sewage farming Unit–4:DESIGNOFSEWERSANDPRIMARYTREATMENT: 13 HOURS Layouts – Design of sewers – Sewers appurtenances – Sewage pumping -Conventional sewagetreatment–Primarytreatment:-Screens–Gritchamber–Sedimentationtanks–
Collectionandconveyanceofsewage–Sewageflowrates–Stormwater–Characteristicsofsewage– Cyclesofdecay–BOD–COD–Ultimatedisposalofsewage–self-purificationofrivers–sewage farming Unit–4:DESIGNOFSEWERSANDPRIMARYTREATMENT: 13 HOURS Layouts – Design of sewers – Sewers appurtenances – Sewage pumping -Conventional sewagetreatment–Primarytreatment:-Screens–Gritchamber–Sedimentationtanks– Designprinciples.SeptictanksandImhofftanks-rurallatrines–Houseplumbing–Appurtenances.
Collectionandconveyanceofsewage–Sewageflowrates–Stormwater–Characteristicsofsewage– Cyclesofdecay–BOD–COD–Ultimatedisposalofsewage–self-purificationofrivers–sewage farming Unit–4:DESIGNOFSEWERSANDPRIMARYTREATMENT: 13 HOURS Layouts – Design of sewers – Sewers appurtenances – Sewage pumping -Conventional sewagetreatment–Primarytreatment:-Screens–Gritchamber–Sedimentationtanks– Designprinciples.SeptictanksandImhofftanks-rurallatrines–Houseplumbing–Appurtenances. Unit–5:SECONDARYBIOLOGICALTREATMENT:13 HOURS
Collectionandconveyanceofsewage–Sewageflowrates–Stormwater–Characteristicsofsewage– Cyclesofdecay–BOD–COD–Ultimatedisposalofsewage–self-purificationofrivers–sewage farming Unit–4:DESIGNOFSEWERSANDPRIMARYTREATMENT: 13 HOURS Layouts – Design of sewers – Sewers appurtenances – Sewage pumping -Conventional sewagetreatment–Primarytreatment:-Screens–Gritchamber–Sedimentationtanks– Designprinciples.SeptictanksandImhofftanks-rurallatrines–Houseplumbing–Appurtenances. Unit–5:SECONDARYBIOLOGICALTREATMENT:13 HOURS Secondary treatment – Biological treatment – Trickling filters – Activated Sludge Process –
Collectionandconveyanceofsewage–Sewageflowrates–Stormwater–Characteristicsofsewage– Cyclesofdecay–BOD–COD–Ultimatedisposalofsewage–self-purificationofrivers–sewage farming Unit–4:DESIGNOFSEWERSANDPRIMARYTREATMENT: 13 HOURS Layouts – Design of sewers – Sewers appurtenances – Sewage pumping -Conventional sewagetreatment–Primarytreatment:-Screens–Gritchamber–Sedimentationtanks– Designprinciples.SeptictanksandImhofftanks-rurallatrines–Houseplumbing–Appurtenances. Unit–5:SECONDARYBIOLOGICALTREATMENT:13 HOURS Secondary treatment – Biological treatment – Trickling filters – Activated Sludge Process – Lowcost waste treatment methods – Design of Oxidation ponds – Aerobic and Anaerobic

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1 Assess the quality and quantity of water requirements for a city

CO2 Designof different treatment units and distribution systems for water supply

CO3 Analyzethecharacteristics, collection, conveyance and disposal of wastewater

CO4	Design of sewers and various units in a wastewater treatment plant					
CO5	Design ofsecondaryandbiologicaltreatmentunits					
Text	books:					
1.	B.C.PunmiaBC,A.K.JainandA.K.Jain, "WaterSupplyEngineering", LaxmiPublications.2 nd					
	Edition1995, Reprint 2005.					
2.	B.C.Punmia, A.K.Jainand A.K.Jain, "Wastewater Engineering", LaxmiPublications, 2 nd Edition 1998,					
	Reprint 2014.					
Refe	rence books:					
	1. S.K.Garg, "WaterSupplyEngineering", KhannaPublishers, 26 th revisedEdition, NewDelhi.2					
	010.					
	2. S.K. Garg, "Sewage disposal and Air Pollution Enginering", Khanna Publishers New					
	Delhi. 36 th Edition, 2017.					
	3. H.S.Peavy, D.Rowe, and G.Tchobanoglous, "Environmental Engineering", McGrawHillPub					
	lishers, New Delhi. 1985.					
	4. G.S.BirdieandJ.S.Birdie, "WaterSupplyandSanitaryEngineering"DhanpatRaiPublishingC					
	ompanyNew Delhi, 6 ⁿ Edition, 2002.					
	5. K.N.Duggal, "Elements of Environmental Engineering", S.Chand & Company Limited, New					
	Delhi,2007.					
	6. P.N.Modi, "SewageTreatmentDisposal&WastewaterEngineering", StandardBookHouse, 2					
	016.					
	7. Manualonsewerageandsewagetreatment, CPHEEO, Ministry of urbanaffairs and employmen					
	t,Govt. ofIndia, New Delhi, 2001					
1						

8. WaterandWastewaterEngineering,NPTELvideolecturesand webnotes

Micro-Syllabus of Environmental Engineering

Unit-I: WATERDEMANDS-STANDARDS-SOURCES

Aspects of Environmental Engineering – Protected water supply – Need – Water borne diseases –Water demands –Fluctuations – Design period-Population forecast – Water quality – Drinking water standards-Testing and significance – Quality and Quantity and other considerations of surface and sub-surface sources – Yield calculations – Intake works — Storage reservoir capacity – Systems of watersupply–Requirements–Detectionofleakages–Selectionofpump–Economical diameter of pumpingmain.

Unit	Module	Micro content
WATERDEMANDS-STANDARDS-SOURCES	WaterDemands	Per capita Demand and factors influencing it Types of water demands and its variations Factors affecting water demand
	Design period	Factors affecting the Design period
	Water borne diseases	Control of

		diseases		
	Aspects of	Role of		
	Environmental	Environmental		
	Engineering	Engineer		
		Characteristics &		
		Analysis of		
	Testing and	water–Physical,		
	significance	Chemical and		
		Biological		
	Intake works	Types of Intakes		
		IS 10500 2012		
	Drinking water	and WHO		
	standards	guidelines for		
		drinking water		
	Yield calculations	Wells		
Unit–II: TREATMENTOFWATERANDDISTRI	BUTION			
Watertreatment conventionaltreatmentflowdiagram	-Sedimentationtypes-Prin	ciples-Design		
factors- Coagulation -Desig	nofClariflocculator	-Filtration-		
Slow RapidgravityfiltersandPressurefilters–Designm	rinciples-Disinfection-	1 110 001011		
TheoryofChlorination_Distribution_systems_ I avoi	uts $-$ Design- and analy	usis Hardy Cross		
method and Equivalent Pipemethod Valves–Othera	npurtenances	515, Hardy C1055		
memor una Equivalent i ipememori varies outera		Micro		
Unit	Module	content		
		Other		
	Disinfection	Disinfection		
		methods		
		Requirements		
		of		
		Distribution		
	Distribution systems	systems		
		Methods of		
TREATMENTOFWATERANDDISTRIBUTIO		Distribution		
N		system		
		Sluice valves,		
		air valves,		
	Valves	scour valves		
		and check		
		valves		
	0.1	Hydrants, and		
	Otherappurtenances	water meters		
Unit-III: WASTEWATERMANAGEMENT Introduction:Wastewatertreatmentsystem–Definition Collectionandconveyanceofsewage–Sewageflowrate Cyclesofdecay–BOD–COD–Ultimatedisposalofsewa farming	nsofterms– es–Stormwater–Character age–self-purificationofriv	isticsofsewage– ers–sewage		
		Micro		
Unit	Module	content		

	Introduction	Systems of
		sanitation
	Wastewatertreatmentsyst	Relative
	em	merits &
		demerits
		Physical,
		Chemical and
	~	Biological
	Characteristicsofsewage	Examination
		Determination
		of bending
WASTEWATERMANAGEMENT		stresses
		BOD
	BOD-COD	equations
		Problems
		Methods of
		disposal
		Disposal into
	Ultimatedisposalofsewag	water bodies
	e	Oxygen Sag
		Curve
		Disposal into
		sea, disposal
		on land
		on land
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten	REATMENT ances – Sewage pumping	-Conventional
Unit-IV: DESIGNOFSEWERSANDPRIMARYTH Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch	REATMENT ances – Sewage pumping amber–Sedimentationtanks–	-Conventional
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App	-Conventional
Unit-IV: DESIGNOFSEWERSANDPRIMARYTH Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App Module	-Conventional urtenances.
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App Module	-Conventional urtenances. Micro content
Unit-IV: DESIGNOFSEWERSANDPRIMARYTH Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit	REATMENT ances – Sewage pumping aamber–Sedimentationtanks- trines–Houseplumbing–App Module Layouts	-Conventional urtenances. Micro content Types of
Unit-IV: DESIGNOFSEWERSANDPRIMARYTH Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App Module Layouts	-Conventional urtenances. Micro content Types of sewers
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App Module Layouts	-Conventional urtenances. Micro content Types of sewers Problems on
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App Module Layouts Design of sewers	-Conventional urtenances. Micro content Types of sewers Problems on design of
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App Module Layouts Design of sewers	-Conventional urtenances. Micro content Types of sewers Problems on design of sewers
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App Module Layouts Design of sewers	-Conventional urtenances. Micro content Types of sewers Problems on design of sewers Cleaning and yoptiletion of
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App Module Layouts Design of sewers Sewers appurtenances	-Conventional urtenances. Micro content Types of sewers Problems on design of sewers Cleaning and ventilation of
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit DESIGNOFSEWERSANDPRIMARYTREATM	REATMENT ances – Sewage pumping amber–Sedimentationtanks– trines–Houseplumbing–App Module Layouts Design of sewers Sewers appurtenances	-Conventional urtenances. Micro content Types of sewers Problems on design of sewers Cleaning and ventilation of sewers
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit DESIGNOFSEWERSANDPRIMARYTREATM ENT	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App Module Layouts Design of sewers Sewers appurtenances	-Conventional urtenances. Micro content Types of sewers Problems on design of sewers Cleaning and ventilation of sewers Pumping stations
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit DESIGNOFSEWERSANDPRIMARYTREATM ENT	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App Module Layouts Design of sewers Sewers appurtenances	-Conventional urtenances. Micro content Types of sewers Problems on design of sewers Cleaning and ventilation of sewers Pumping stations
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit DESIGNOFSEWERSANDPRIMARYTREATM ENT	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App Module Layouts Design of sewers Sewers appurtenances	-Conventional urtenances. Micro content Types of sewers Problems on design of sewers Cleaning and ventilation of sewers Pumping stations Location
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit DESIGNOFSEWERSANDPRIMARYTREATM ENT	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App Module Layouts Design of sewers Sewers appurtenances	-Conventional urtenances. Micro content Types of sewers Problems on design of sewers Cleaning and ventilation of sewers Pumping stations Location Components
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit DESIGNOFSEWERSANDPRIMARYTREATM ENT	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App Module Layouts Design of sewers Sewers appurtenances Sewage pumping	-Conventional urtenances. Micro content Types of sewers Problems on design of sewers Cleaning and ventilation of sewers Pumping stations Location Components Types of pumps and
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit DESIGNOFSEWERSANDPRIMARYTREATM ENT	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App Module Layouts Design of sewers Sewers appurtenances Sewage pumping	-Conventional urtenances. Micro content Types of sewers Problems on design of sewers Cleaning and ventilation of sewers Pumping stations Location Components Types of pumps and their
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit DESIGNOFSEWERSANDPRIMARYTREATM ENT	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App Module Layouts Design of sewers Sewers appurtenances Sewage pumping	-Conventional urtenances. Micro content Types of sewers Problems on design of sewers Cleaning and ventilation of sewers Pumping stations Location Components Types of pumps and their suitability
Unit-IV: DESIGNOFSEWERSANDPRIMARYTI Layouts – Design of sewers – Sewers appurten sewagetreatment–Primarytreatment:-Screens–Gritch Designprinciples.SeptictanksandImhofftanks-ruralla Unit DESIGNOFSEWERSANDPRIMARYTREATM ENT	REATMENT ances – Sewage pumping amber–Sedimentationtanks- trines–Houseplumbing–App Module Layouts Design of sewers Sewers appurtenances Sewage pumping	-Conventional urtenances. Micro content Types of sewers Problems on design of sewers Cleaning and ventilation of sewers Pumping stations Location Components Types of pumps and their suitability with record to

		wastewaters
		Working
		Principles and
		Design
	SeptictanksandImhofftan	Reuse and
	ks-rurallatrines	disposal of
		septic tank
		effluent
		One pipe and
	Houseplumbing	two pipe
		systems
		Sanitary
		fittings and
	Appurtenances	other
		accessories
Unit-V: SECONDARYBIOLOGICAL TREATME	NT	
Secondary treatment – Biological treatment – Tric	kling filters – Activated Slu	udge Process –
Lowcost waste treatment methods – Design of C	Dxidation ponds – Aerobic	and Anaerobic
lagoons.Sludge Digestion–Disposal.	render render rendered	
		Micro
Unit	Module	content
		Aerobic and
		anaerobic
	Biological treatment	treatment
		process-
		comparison
		Mechanism of
		impurities
		removal
		Classification
		Design,
		operation and
		maintenance
SECONDARYBIOLOGICALTREATMENT	Trickling filters	problems
	Theking mers	Longitudinal
		strain
		Volumetric
		strain
		Changes in
		diameter, and
		volume of thin
		cylinders.
		Principles,
		designs, and
	Activated Sludge Process	operational
		problems
		modifications

	of Activated
	Sludge
	Processes
	Characteristi
	CS
	SVI
	Handling and
	treatment of
	sludge
	Thickening
	Anaerobic
	digestion of
Chalas Disection	sludge
Sludge Digestion	Radial
	stresses
	Thick
	cylinders
	(simple
	problems)
	Compound
	cylinders
	(simple
	problems)
	Sludge Drying
Disposal	Beds.
	Centrifuge

CO – PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2									
CO2	3	2		2		1						
CO3	2	2										
CO4	2	2		2		2						
CO5	2	2		2		2						

II-Year-II Semester ES2201L

SCIENTIFIC COMPUTING PYTHON LAB

L	Т	Р	С
0	0	3	1.5

Course objectives:

1. To understand basic operations in Python

1. To apply use if-else statements and switch-case statements to write programs in Python to tackle any decision-making scenario.

List of Experiments:

Section 1

Exercise 1 – Input and Output

a) Write a Python program which accepts the user's first and last name and print them in reverse order with a space between them.

- b) Write a Program which takes input for a variable and returns its type.
- c) Write a Python program to get the Python version you are using.

Exercise 2 - Operations

a) Write a Python program that will accept the base and height of a triangle and compute the area.

b) Write a program to compute distance between two points coordinates taking (x1, y1) and (x2, y2) input from the user (Pythagorean Theorem)

c) Write a program to convert length in m to Ft-in

Section 2

Exercise - 3 Control Flow: If-Else

a) Write a Program for checking whether the given number is an Even or Odd.

b) Write a program to convert angles bearings) in Whole circle bearing (WCB) system to Reduced Bearing (RB) system.

c) Write a Python program to convert temperatures to and from Celsius, Fahrenheit. Or vice versa.

Exercise 4 - Control Flow – For, while

- a) Python Program to Find the Sum of first N Natural Numbers
- b) Python Program to Display the multiplication Table

c) Write a program using a while loop that asks the user for a number, and prints a countdown from that number to zero.

Section 3

Exercise - 5 - DS

a) write a Program to Illustrate Different List Operations

- b) Find mean and standard deviation for the given set of numbers in a list.
- c) write a Program to Illustrate Different Tuples Operations

Exercise - 6 DS - Continued

- a) Python Program to Illustrate Different Set Operations
- b) Python Program to Illustrate Different Dictionaries Operations

Exercise - 7 Functions

- a) Python Program to Make a Simple Calculator using functions
- b) Write a function to compute and return area of triangle with user give three sides.
- c) Write a program to find the sum of natural using recursive function

Section 4

Exercise - 8 - Modules

a) Define all functions used in Exercise 7 create as module and save it as "functions.py".

b) Execute all the operations performed in Exercise 7 by importing above module "functions.py" without defining any function.

c) Install any package using (pip) and list all the available functions using dir() function.

Exercise 9 - Math Module

a) write a Program to Illustrate Different Constants, Power and logarithmic, Angular conversion functions in math module

b) write a Program to Illustrate Different Trigonometric and Hyperbolic functions in math module **Exercise 10 - Numpy**

a) Write a program that defines a matrix and prints using Numpy.

b) Write a program to perform Addition, Subtraction, Multiplication of two square matrices of same size using Numpy.

c) Write a program to perform Transpose, Inverse, Eigen values and Eigenvectors of a 5x5 matrix using Numpy.

Section 5

Exercise 11 – Matplotlib

a) Write a Program to Draw bending moment and shear force diagram of a cantilever with point load at end.

b) Write a Program to Draw bending moment and shear force diagram of a simply supported beam with UDL.

Exercise 12 - Scipy

- a) Write a program to find numerical integration of a given equation and range [a,b] using Scipy.
- b) Write a program to perform 1D linear interpolation between two numbers using Scipy.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Perform necessary experiments to det Understand basic oprations in Python.
CO2	Apply use if-else statements and switch-case statements to write programs in Python to
	tackle any decision-making scenario.
CO3	Perform, Store and retrieve information using Data structures.
CO4	Understand Use of python libraries for problem solving.
CO5	Create graphical form representation for computed data.

CO – PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1							1
CO2	3	3	3	3	1							
CO3	2	3	2									
CO4	2	3	1	1	3						1	2
CO5	3	3	2	1	2					2		1

II-Year-II Semester PC2202L

BUILDING PLANNING AND DRAWING

L	Τ	Ρ	С
0	0	3	1.5

Pre-Requisites: AutoCAD Basics

Course objectives:

- 1. Initiating the student to different building bye-laws and regulations.
- 2. Imparting the planning aspects of residential buildings and public buildings.
- 3. Giving training exercises on various sign conventions and different building units.
- 4. Imparting the skills and methods of planning of various buildings.

List of Experiments

- 1. History of Indian Architecture
- 2. Overview of NBC- 2016 and Building Bye Laws
- 3. Principles of Planning of a Residential building, Orientation of building and Minimum standards for various parts of Residential Building with respect to AP GO No: 168
- 4. Principles of Planning of Commercial buildings and Minimum standards for various parts of Commercial Buildings with respect to AP GO No: 168
- 5. Prepare a line diagram of 2BHK for the given site according Go No: 168
- 6. Prepare a line diagram of 3BHK for the given site according Go No: 168
- 7. Overview of IS 962-1989 and Software's used for 2D and 3D drawings
- 8. Draw the Sign conventions of Building, Electrical and Plumbing
- 9. Draw any given Field Measurement book sketch
- 10. Draw the Plan, Section and Elevation of a two bed room house
- 11. Draw the Plan, section and Elevation of a MIG house
- 12. Draw the Plan, Section and Elevation of an Educational building
- 13. Plan, Section and Elevation of a Hotel/Motel building
- 14. Plan, Section and Elevation of a Hospitals/Dispensaries building
- 15. Draw the plan of a given Layout
- 16. Draw a detailing Diagram of RCC Beam & Column
- 17. Draw a detailing diagram of RCC Slab and Isolated foundation

Course Outcomes: Upon successful completion of the course, the student will be able to

- **CO1** Able to plan various buildings as per the building by-laws.
- **CO2** Able to distinguish the relation between the plan, elevation and cross section and identify the form and functions among the buildings.
- **CO3** Expected to learn the skills of drawing building elements and plan the buildings as per requirements.

CO – PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2		2			2		2		
CO2	2	2	1		1					3		
CO3	2	2	1		3		2	2		3		1

II-Year-II SemesterFLUID MECHANICS AND HYDRAULIC
MACHINERY LAB

L	Τ	Р	С
0	0	3	1.5

Pre Requisites: Fluid Mechanics, Hydraulics and Hydraulic Machinery

Course Objectives:

- To impart practical exposure to use various flow measuring devices for making engineering judgments.
- To provide practice in estimating friction losses.
- To impart training to use various hydraulic turbines and pumps.

List of Experiments

- 1. Calibration of Venturimeter& Orifice meter
- 2. Determination of Coefficient of discharge for a small orifice by Constant head method.
- 3. Calibration of Orifice meter
- 4. Calibration of contracted Rectangular Notch and /or Triangular Notch
- 5. Determination of Coefficient of loss of head in a sudden contraction and friction factor.
- 6. Verification of Bernoulli's equation.
- 7. Impact of jet on vanes
- 8. Performance test on Pelton wheel turbine
- 9. Performance test on Francis turbine.
- 10. Efficiency test on centrifugal pump.
- 11. Efficiency test on reciprocating pump.

Course Outcomes: After Successful completion of course the student can able to

CO1	Calibrate flow measurement devices like Venturimeter and orifice meter, etc
CO2	Estimate the friction and measure the frictional losses in fluid flow.
CO3	Compute the performance of various hydraulic turbines and pumps

CO – PO mapping

Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	3	3		3									2		
C02	3	3		2										2	
C03	3	3	2	2										2	

II-Year-II Semester SOC2201

DIGITAL LAND SURVEYING

L	Τ	Ρ	С		
0	0	4	2		

Course objectives:

To practice various advanced digital surveying instruments & mapping techniques.

List of Experiments

- 1. Basics of Instrument setup of Total station.
- 2. Measuring coordinates of control points with respect to base station using Total Station.
- 3. Measurement of distance between two points using Total station (with single station point).
- 4. Area measurement using Total station (with single station point).
- 5. Verification of Total station, station shifting with back sighting.
- 6. Measurement of distance between two points using Total station (with minimum 3 station point shiftings)
- 7. Area measurement using Total station (with minimum 3 station point shiftings).
- 8. Measurement of various features of given area using total station.
- 9. Exporting measured survey points coordinates data to .csv file format
- 10. Importing 2-Dimentinal and 3-Dimentinal points coordinates data in .csv file format to AutoCADDrawing
- 11. Exporting Point Data in .CSV file to Total station.
- 12. Stake out of a single bedroom plan on ground using total station.
- 13. Preparation of Contour map of a given area using Total Station and relative software.
- 14. Finding of GPS coordinates of Give point with an accuracy upto 3m.
- 15. Measurement of area using GPS (minimum area of 10acres).
- 16. Introduction to photogrammetric surveying, using Drones
- 17. Flight planning and data collection using an autonomous Drone.
- 18. Processing of photogrammetric data and preparation of Orthomosaic Map and 3D model.
